## Manning River Floodplain Prioritisation Study: Appendix A – J

WRL TR 2020/09, May 2023

By D S Rayner, J E Ruprecht, A J Harrison, T A Tucker, G Lumiatti, P F Rahman, D M Gilbert and W C Glamore





### A1 Preamble

Up to date mapping of floodplain waterways within the study area was required to inform the prioritisation assessment and can also be used to inform the implementation of management options. The following section summarises the available existing data which maps present day waterways across the Manning River floodplain (below 5 m AHD) and also presents an updated spatial waterways data layer, created using existing data, which provides a consistent and uniform dataset across the floodplain. This updated spatial layer incorporates the results of a detailed multi criteria analysis for categorising a waterway as a natural waterbody watercourse, an artificial waterbody, or a watercourse or connector watercourse. Details on the development of the updated spatial layer and the multi criteria analysis can be found in Section 12 of the Methods report (Rayner et al., 2023). The updated waterways layer was used to calculate subcatchment drainage density during the subcatchment prioritisation assessment and will also be a valuable tool for informing management option implementation.

### A2 Existing waterway data

Available information for the floodplain waterway network across the Manning River floodplain was from multiple data sources as summarised in Table A-1.

| Dataset                                         | Data format | Provides<br>waterway<br>naming<br>information? | Distinguishes<br>between artificial<br>and natural<br>waterways? | Local or state wide dataset? |
|-------------------------------------------------|-------------|------------------------------------------------|------------------------------------------------------------------|------------------------------|
| Geoscience Australia<br>surface hydrology lines | Geodatabase | Yes                                            | Yes                                                              | State wide                   |
| NSW Spatial Services<br>hydrology lines         | Shapefile   | Yes                                            | No                                                               | State wide                   |
| NSW Spatial Services<br>hydrology lines         | WMS layer   | Yes                                            | Yes                                                              | State wide                   |
| NSW DPI Fisheries<br>manmade drains             | Shapefile   | No                                             | Yes                                                              | State wide                   |

#### A3 Waterway classification

For this study, an updated waterways spatial dataset was developed for the Manning River floodplain to incorporate the most recent changes to the waterway network and ensure a consistent level of detail across the floodplain. The alignments and configurations of floodplain waterways are continuously changing due to varying management requirements of waterway owners across the floodplain. Inspection of the existing waterway data showed varying degrees of accuracy and detail for the different datasets in Table A-1, reflecting the different purposes for which the individual spatial layers had been created.

To ensure an up-to-date waterways dataset across all areas in the Coastal Floodplain Prioritisation Study, a multi criteria analysis was completed to categorise waterways into the following:

- Natural waterbody watercourses a natural waterway that pre-dates European settlement. Natural waterbody watercourses are typically sinuous and follow geological features;
- Artificial waterbodies a constructed waterway that was purpose built to enhance drainage of backswamps or redirect water. Artificial waterways are typically straight, and deep;
- Watercourses typically a waterway that follows a natural drainage system, but has been heavily modified or disconnected from the upstream catchment; and
- Connector watercourses a waterway with either natural or artificial sections that provides a connection between two natural waterbody watercourses. Typically, connector watercourses flow through a drainage network which was once a backswamp connecting the upper catchment to the river.

Further details on the approach taken to update the waterways spatial layer and the multi criteria analysis can be found in Section 12 of the Methods report (Rayner et al., 2023). The updated spatial dataset and results of the multi criteria analysis are presented in Figure A-1. Note, update and classification of waterways was completed for elevations below 5 m Australian Height Datum (AHD) as is consistent with catchment delineation used for the subcatchment prioritisation.



Figure A-1: Manning River floodplain waterways

#### A4 Drainage density

The drainage density of each subcatchment is determined by the total waterway length across the subcatchment relative to the subcatchment area affected by acid sulfate soils (see Section 4.3.1 of the Methods report (Rayner et al., 2023)). When assessing the length of waterways that contribute to the drainage of an acid sulfate soil affected landscape, all waterways within the subcatchment boundaries were included in the priority assessment to provide a total waterway length for each subcatchment, as all waterways have the potential to impact acid sulfate soil oxidation and acid mobilisation. A summary of the floodplain drainage density analysis is provided in Table A-2 and the ranking of the drainage density factors for each subcatchment of the Manning River floodplain is presented in Figure A-2.

|                     | -                               |                              |                             |                            |
|---------------------|---------------------------------|------------------------------|-----------------------------|----------------------------|
| Subcatchment        | Total waterway<br>length<br>(m) | Floodplain<br>area*<br>(km²) | Drainage density<br>(m/km²) | Drainage<br>density rank** |
| Big Swamp           | 106,882                         | 43.95                        | 2,432                       | 10                         |
| Bukkan Bukkan Creek | 44,100                          | 11.02                        | 4,002                       | 5                          |
| Cattai Creek        | 34,405                          | 18.93                        | 1,818                       | 12                         |
| Coopernook          | 34,938                          | 6.29                         | 5,556                       | 1                          |
| Croakers Creek      | 21,260                          | 10.41                        | 2,043                       | 11                         |
| Dawson River        | 10,423                          | 7.84                         | 1,330                       | 15                         |
| Dumaresq Island     | 17,299                          | 5.98                         | 2,892                       | 7                          |
| Ghinni Ghinni       | 106,251                         | 24.53                        | 4,332                       | 3                          |
| Glenthorne          | 24,385                          | 8.62                         | 2,830                       | 8                          |
| Jones Island        | 30,627                          | 6.49                         | 4,717                       | 2                          |
| Mambo Island        | 12,353                          | 3.02                         | 4,096                       | 4                          |
| Mitchells Island    | 55,041                          | 20.67                        | 2,663                       | 9                          |
| Moto                | 137,603                         | 35.61                        | 3,864                       | 6                          |
| Pampoolah           | 16,257                          | 10.16                        | 1,600                       | 13                         |
| Taree Estate        | 1,537                           | 1.15                         | 1,341                       | 14                         |

#### Table A-2: Floodplain drainage density

\* Floodplain area is calculated as the area below 5 m AHD that is high or low risk in the acid sulfate soil risk mapping.

\*\* Ranking is from highest drainage density to lowest drainage density.



Figure A-2: Floodplain drainage density ranking

#### B1 Preamble

The following appendix details the catchment hydrology which is included in the normalised inflow factor in the acid sulfate soil prioritisation assessment, described in detail in Section 4.3.2 in the Methods report (Rayner et al., 2023). This includes the calculation of a runoff coefficient (Section B2) and a catchment size factor (Section B3), to determine an inflow factor (Section B4).

### B2 Runoff coefficient

The catchment runoff assessment for the Manning River floodplain was undertaken by comparing the volume of runoff generated by precipitation from incident rainfall with the observed subsequent streamflow data. Details of the methods used to calculate the runoff coefficient can be found in Section 4.3.2 in the Methods report (Rayner et al., 2023). The WaterNSW network of river flow gauges and the available daily rainfall data from the Bureau of Meteorology (BOM) for the Manning River floodplain is shown in Figure B-1.



Figure B-1: Manning River Floodplain location of rainfall and runoff stations

Stream flow gauges upstream of the tidal confluence that are most representative of the lower catchment rainfall-runoff conditions were selected for the catchment hydrology analysis. WaterNSW gauging station 208015 was selected for the Manning River Floodplain assessment. The upstream contributing area of this site was delineated using standard GIS techniques based on a digital elevation model (DEM) of the catchment. Daily rainfall data relative to the river gauging station was sourced from the BOM

database and a Thiessen polygon approach was applied to weight the total rainfall to the upstream area. The location of the gauging site, upstream catchment area of the gauging site, and the BOM rainfall contribution (shown in parenthesis) used in the analysis are summarised in Figure B-2.



Figure B-2: Upstream catchment of selected flow sites

The runoff coefficient provides a relationship between rainfall-runoff volumes and allows for varying amounts of pervious and impervious surfaces across a catchment. It follows that if the predicted runoff volume from incident rainfall is known, and is compared to the available observed streamflow data, then the volume difference would be equivalent to the runoff coefficient (assuming the catchment was 100% impervious). For consistency, in this study, it was also assumed that land-use type, vegetation, and the proportion of pervious and impervious surfaces, was the same for each subcatchment in the floodplain (i.e. the runoff coefficient for this study represents an amalgamated factor taking into account catchment variables such as soil type, land use etc. for each subcatchment).

The runoff co-efficient was selected by comparing the annual time-series of streamflow data for the predicted runoff volume calculated for the selected gauging station. Figure B-3 shows an example time-series of predicted and observed runoff for 2012. This analysis yielded an estimated runoff coefficient of 0.43, which was applied to Manning Floodplain subcatchments for the acid prioritisation assessment.



Figure B-3: Predicted and observed runoff for the catchment area upstream of river gauging station 208015

#### B3 Catchment size factor

The size of the subcatchment influences the hydrological response of the site during a rainfall event. When comparing drainage areas of similar acidity, a large catchment will have a greater potential to discharge more acid than a small catchment. That is, an ASS affected drainage unit with high-risk ASS and a large catchment area contributing to acid drainage has a greater potential to produce higher potential acid flux during a post-flood recession period. Subsequently, accurate estimates of subcatchment areas and the potential discharge from those areas is critical to assessing subcatchments that are of a high-risk for acid drainage.

For the purpose of this study, the floodplain subcatchments have been defined as areas that are below 5 m AHD and classified as at risk for ASS. The whole floodplain area is considered to contribute to acid drainage risk. Upland catchments (above 5 m AHD) were divided into areas that discharge to the estuary via an end-of-system floodgate structure, or discharge uninhibited to the estuary. In this study, only upland catchments that are upstream of floodgates have been considered to contribute to acid drainage potential. These areas were identified using information on floodgate infrastructure and the NSW hydrography layer. Contributing catchments were then delineated using standard GIS techniques as shown in Figure B-4.

The total areas of each subcatchment were then normalised against the subcatchment with the largest total area (i.e. catchment size factor = 1.0) for comparison.



Figure B-4: Catchment size factor for each subcatchment in the Manning Estuary

#### B4 Inflow Factor

The combination of a runoff coefficient and a normalised catchment size factor is used to provide an estimation of the relative water yield of each floodplain subcatchment. The inflow factor is calculated as per Equation B-1.

```
Normalised inflow factor
= Runoff coefficient × Catchment Size Factor Equation B-1
```

The inflow factors for each Manning River floodplain subcatchment are detailed in Table B-1 and shown in Figure B-5.

| Subcatchment        | Runoff<br>coefficient | Upland<br>catchment<br>area (m²) | Total<br>catchment<br>area (m²) | Catchment<br>size<br>factor | Inflow<br>factor |
|---------------------|-----------------------|----------------------------------|---------------------------------|-----------------------------|------------------|
| Coopernook          | 0.43                  | 1,423,181                        | 7,711,852                       | 0.136                       | 0.059            |
| Cattai Creek        | 0.43                  | 0                                | 18,926,269                      | 0.334                       | 0.144            |
| Big Swamp           | 0.43                  | 12,705,174                       | 56,656,336                      | 1.000                       | 0.430            |
| Mambo Island        | 0.43                  | 0                                | 3,015,945                       | 0.053                       | 0.023            |
| Moto                | 0.43                  | 9,876,289                        | 45,487,419                      | 0.803                       | 0.345            |
| Jones Island        | 0.43                  | 0                                | 6,492,462                       | 0.115                       | 0.049            |
| Dawson River        | 0.43                  | 0                                | 7,838,355                       | 0.138                       | 0.059            |
| Ghinni Ghinni       | 0.43                  | 23,527,559                       | 48,055,194                      | 0.848                       | 0.365            |
| Dumaresq Island     | 0.43                  | 0                                | 5,982,609                       | 0.106                       | 0.045            |
| Mitchells Island    | 0.43                  | 5,084,254                        | 25,755,489                      | 0.455                       | 0.195            |
| Bukkan Bukkan Creek | 0.43                  | 0                                | 11,019,231                      | 0.194                       | 0.084            |
| Croakers Creek      | 0.43                  | 406,196                          | 10,812,287                      | 0.191                       | 0.082            |
| Taree Estate        | 0.43                  | 0                                | 1,146,063                       | 0.020                       | 0.009            |
| Pampoolah           | 0.43                  | 0                                | 10,157,787                      | 0.179                       | 0.077            |
| Glenthorne          | 0.43                  | 0                                | 8,615,837                       | 0.152                       | 0.065            |

Table B-1: Catchment hydrology analysis summary table



Figure B-5: Subcatchment inflow factors

# **Appendix C** Groundwater saturated hydraulic conductivity data

#### C1 Preamble

The following section outlines the saturated hydraulic conductivity data (hereafter referred to as hydraulic conductivity) used in the prioritisation method (Section 4) for determining the groundwater factor for the Manning River floodplain. A detailed discussion of the principles relating to hydraulic conductivity and data collection can be found in Appendix A of the Methods report (Rayner et al., 2023). Details on the techniques and methods used to collect the field data presented in this section can be found in Appendix B of the Methods report (Rayner et al., 2023).

### C2 Existing hydraulic conductivity data

Prior to Glamore et al. (2016), field measurements of insitu saturated hydraulic conductivity across the subcatchments of the Manning River floodplain were limited. Whilst widespread soil profile investigations had been undertaken, limited resources were allocated to investigate insitu saturated hydraulic conductivity. Existing data showed a large variability in K<sub>sat</sub> across the floodplain, with a range between <0.0001 m/day (i.e. extremely low) to >100 m/day (i.e. extremely high). Reviewed sources of insitu saturated hydraulic conductivity data included:

- Johnston (2007);
- Hirst et al. (2009); and
- Glamore et al. (2014).

The insitu hydraulic conductivity data from these sources is provided in Tables C-1 to C-3. The locations of the measurements are provided in Figure C-1. Note that the K-values presented are considered estimates of the average saturated hydraulic conductivity of the soil profile at the measurement locations. The categories for each measurement listed in Tables C-1 to C-3 are inferred from the field assessment guidelines outlined in Johnston and Slavich (2003), and are presented for comparison with insitu hydraulic conductivity measurements collected during the field assessment component of this study.

| ID | Catchment | Easting (m) | Northing (m) | Estimated K <sub>sat</sub> (m/day) | Category | рН   |
|----|-----------|-------------|--------------|------------------------------------|----------|------|
| P1 | Big Swamp | 468214.8    | 6479921      | 2.1                                | Moderate | 3.14 |
| P2 | Big Swamp | 468116.4    | 6479913      | 6.9                                | Moderate | 3.15 |
| P3 | Big Swamp | 468078.3    | 6479771      | 18                                 | High     | 3.46 |
| P4 | Big Swamp | 469474.2    | 6480872      | 29                                 | High     | -    |

#### Table C-1: Summary of insitu hydraulic conductivity data collected by Johnston (2007)

| ID          | Catchment    | Easting (m) | Northing (m) | Estimated K <sub>sat</sub> (m/day) | Category      |
|-------------|--------------|-------------|--------------|------------------------------------|---------------|
| Templeman-1 | Moto         | 461526      | 6477589      | 3.2                                | Moderate      |
| Templeman-2 | Moto         | 461401      | 6477411      | 14.7                               | Moderate      |
| Templeman-3 | Moto         | 461336      | 6477492      | 8.6                                | Moderate      |
| Roche-1     | Moto         | 459935      | 6478536      | 0.8                                | Low           |
| Roche-2     | Moto         | 459544      | 6478481      | 6.26                               | Moderate      |
| Roche-3     | Moto         | 459222      | 6478454      | 11.28                              | Moderate      |
| Roche-4     | Moto         | 459351      | 6478264      | 11.12                              | Moderate      |
| Roche-5     | Moto         | 459885      | 6478303      | 21.8                               | High          |
| Roche-6     | Moto         | 459939      | 6478496      | 0.8                                | Low           |
| Roche-7     | Moto         | 459935      | 6478545      | 9.31                               | Moderate      |
| Roche-8     | Moto         | 459941      | 6478551      | 29.03                              | High          |
| Roche-9     | Moto         | 459955      | 6478536      | 8.87                               | Moderate      |
| Cattai-1    | Cattai Creek | 465959      | 6477643      | 1.07                               | Low           |
| Cattai-2    | Cattai Creek | 465939      | 6477632      | 3.36                               | Moderate      |
| Cattai-3    | Cattai Creek | 465483      | 6477572      | 1.88                               | Moderate      |
| Cattai-4    | Cattai Creek | 465164      | 6477277      | 1.5                                | Low           |
| Cattai-5    | Cattai Creek | 465321      | 6477131      | <0.0001                            | Extremely Low |
| Cattai-1a   | Cattai Creek | 466234      | 6477980      | 10.86                              | Moderate      |

Table C-2: Summary of insitu hydraulic conductivity data collected by Hirst et al. (2009)

Table C-3: Summary of insitu hydraulic conductivity data collected by Glamore et al. (2014)

| ID | Catchment | Easting (m) | Northing (m) | Estimated K <sub>sat</sub> (m/day) | Category       | рΗ  |
|----|-----------|-------------|--------------|------------------------------------|----------------|-----|
| 1  | Big Swamp | 469062      | 6480970      | 60                                 | High           | -   |
| 2  | Big Swamp | 469243      | 6481231      | 20                                 | High           | -   |
| 3  | Big Swamp | 469435      | 6482521      | 15                                 | High           | -   |
| 4  | Big Swamp | 467979      | 6479503      | 35                                 | High           | 4.0 |
| 5  | Big Swamp | 469668      | 6484688      | >100                               | Extremely High | 4.8 |
| 6  | Big Swamp | 469797      | 6483516      | 60                                 | High           | 3.4 |
| 7  | Big Swamp | 470084      | 6483083      | 30                                 | High           | 3.4 |
| 8  | Big Swamp | 469483      | 6481467      | 90                                 | High           | 3.8 |
| 9  | Big Swamp | 468888      | 6480137      | 70                                 | High           | 4.4 |
| 10 | Big Swamp | 469172      | 6480564      | 15                                 | High           | 4.3 |
| 11 | Big Swamp | 470570      | 6483794      | 8                                  | Moderate       | 3.7 |



Figure C-1: Previously published insitu saturated hydraulic conductivity measurement sites

### C3 Data collection from Glamore et al. (2016)

Due to the paucity of hydraulic conductivity data in the many subcatchments of the Manning River floodplain, Glamore et al. (2016) completed field investigations to collect insitu hydraulic conductivity data to undertake the priority assessment. The Johnston and Slavich (2003) open pit methodology was applied to measure hydraulic conductivity in the field. Location and results of the field measurements are provided in Figure C-2 and Table C-4.



Figure C-2: 2015 field assessment locations of hydraulic conductivity

| Site | Subcatchment           | Easting<br>(m) | Northing<br>(m) | K <sub>sat(H)</sub><br>Category | Rating | рН   | EC<br>(µS/cm) |
|------|------------------------|----------------|-----------------|---------------------------------|--------|------|---------------|
| k12  | Bukkan Bukkan<br>Creek | 459426         | 6471361         | Extremely<br>High               | 5      | 3.74 | 9,890         |
| k21  | Glenthorne             | 449479         | 6467467         | Extremely<br>High               | 5      | 3.98 | 668           |
| k15  | Mitchells Island       | 461586         | 6469935         | High                            | 4      | 4.65 | 29,000        |
| k19  | Bukkan Bukkan<br>Creek | 459339         | 6470738         | High                            | 4      | 3.60 | 9,223         |
| k18  | Pampoolah              | 455470         | 6466388         | High                            | 4      | 4.22 | 11,900        |
| k11  | Ghinni Ghinni          | 456278         | 6473648         | High                            | 4      | 3.88 | 1,277         |
| k7   | Moto                   | 461267         | 6476013         | High                            | 4      | 3.70 | n.s.          |
| k5   | Moto                   | 461105         | 6477666         | High                            | 4      | 3.95 | 9,312         |
| k20  | Taree Estate           | 446217         | 6466969         | Moderate                        | 3      | n.s. | 747           |
| k10  | Ghinni Ghinni          | 456692         | 6474571         | Moderate                        | 3      | 3.72 | 1,288         |
| k2   | Cattai Creek           | 463920         | 6476781         | Moderate                        | 3      | 5.95 | 13,020        |
| k4   | Coopernook             | 461608         | 6479066         | Moderate                        | 3      | 3.64 | 17,430        |
| k3   | Mambo Island           | 465049         | 6475304         | Low                             | 2      | 5.65 | 35,300        |
| k8   | Jones Island           | 462539         | 6477342         | Extremely Low                   | 1      | 4.62 | 18,820        |
| k31  | Dawson River           | 451360         | 6471681         | Extremely Low                   | 1      | N/A  | N/A           |
| k17  | Dumaresq Island        | 454543         | 6469781         | Extremely Low                   | 1      | N/A  | N/A           |
| k13  | Croakers Creek         | 461883         | 6466644         | Extremely Low                   | 1      | N/A  | N/A           |
| k14  | Mitchells Island       | 462432         | 6473145         | Extremely Low                   | 1      | N/A  | N/A           |

#### Table C-4: Summary of 2015 insitu hydraulic conductivity data

### C4 Summary of saturated hydraulic conductivity risk ratings

Hydraulic conductivity measurements have been used to determine a risk rating which forms part of the groundwater factor during the subcatchment prioritisation (see Section 4 of the Methods report (Rayner et al., 2023)). The risk rating applies on a scale of one (1) to five (5) corresponding to the risk classifications with extremely low equating to a risk rating of one and extremely high equating to a risk rating of five. This results in subcatchments with larger hydraulic conductivities having an increased risk as they are able to transport larger volumes of acidic groundwater to the estuary. Since hydraulic conductivity measurements across ASS affected floodplains can be highly variable, further hydraulic conductivity investigations may be required to add further detail to the management options. An overall summary of the risk associated with hydraulic conductivity for each subcatchment is provided in Table C-5.

| Subcatchment        | Ksat Category | <b>Risk Rating</b> |
|---------------------|---------------|--------------------|
| Moto                | Moderate      | 3                  |
| Ghinni Ghinni       | Moderate      | 3                  |
| Big Swamp           | High          | 4                  |
| Glenthorne          | High          | 4                  |
| Coopernook          | Moderate      | 3                  |
| Pampoolah           | Moderate      | 3                  |
| Bukkan Bukkan Creek | High          | 4                  |
| Dawson River        | Extremely Low | 1                  |
| Cattai Creek        | Moderate      | 3                  |
| Mitchells Island    | Moderate      | 3                  |
| Croakers Creek      | Extremely Low | 1                  |
| Taree Estate        | Moderate      | 3                  |
| Jones Island        | Extremely Low | 1                  |
| Mambo Island        | Extremely Low | 1                  |
| Dumaresq Island     | Extremely Low | 1                  |

| Table C-5: Summary of saturated hydraulic conductivity for each subcatchment in the Manning |
|---------------------------------------------------------------------------------------------|
| River floodplain                                                                            |

#### D1 Preamble

This section provides an overview of the soil profile data, such as surface elevation, profile depths and minimum pH available within the Manning River floodplain. This includes existing data available on the NSW Government eSPADE database and data in published literature where applicable (Section D3). In areas with limited existing soil profile information, a targeted field campaign was undertaken to address data gaps. Information on the data collected (including soil profiles) is summarised in Section D4.

### D2 Preamble

This section provides an overview of the soil profile data, such as surface elevation, profile depths and minimum pH available within the Manning River floodplain. This includes existing data available on the NSW Government eSPADE database and data in published literature where applicable (Section D3). In areas with limited existing soil profile information, a targeted field campaign was undertaken to address data gaps. Information on the data collected (including soil profiles) is summarised in Section D4.

### D3 Existing soil profile data

Soil profile data on the Manning River floodplain that was available prior to the commencement of this study was sourced from:

- eSPADE Database (DPIE, 2020);
- Glamore et al. (2014);
- WRL (2019); and
- Ruprecht et al. (2020b).

#### D3.1 eSPADE database

eSPADE provides a database of information collected by earth scientists and other technical experts. eSPADE contains descriptions of soils, landscapes and other geographic features, and is used by the NSW Government, other organisations, and individuals, to improve planning and decision-making for land management. eSPADE contains extensive soil profile data for the Manning area.

eSPADE data has been filtered to remove any profiles that do not contain acidity (pH) data for each of the layers. Elevation data has been extracted from a 1 m DEM of the Manning floodplain. Where data is available on the floodplain, it has been included in estimating acid export in the region. Note that a low pH often indicates oxidised acidic soils, particularly in conjunction with the presence of yellow/orange mottling (jarosite). A layer of near neutral pH (pH 7 to 8) below an acidic layer indicates potential acidic soils, often in conjunction with a soil description of dark grey estuarine muds and clays. The presence of potential acid sulfate soils can be confirmed via a field oxidation test, with high stored acidity confirmed by a violent oxidation reaction, although this is not typically provided in the eSPADE database. The

location of all relevant eSPADE soil profiles within the study area is presented in Figure D-1 and a summary of the soil profile data, including approximate surface elevation and minimum profile pH (within the tidal range), is provided in Table D-1.



Figure D-1: Location of applicable eSPADE soil profiles in the study region

#### Table D-1: Summary of relevant eSPADE profiles (DPIE, 2020)

\*Surface elevation extract from 1 m LiDAR

\*\* Minimum pH in this table is within the range of MLWS to 1 m AHD. Lower pH may have been observed elsewhere in the

| eSPADE<br>Profile<br>ID | Subcatchment | Easting | Northing | Surface<br>elevation<br>(m AHD)* | Total<br>profile<br>depth (m) | Minimum<br>pH** |
|-------------------------|--------------|---------|----------|----------------------------------|-------------------------------|-----------------|
| 24280                   | Big Swamp    | 470754  | 6483339  | 1.42                             | 1.3                           | 5.5             |
| 24281                   | Big Swamp    | 469924  | 6483319  | 0.86                             | 1.9                           | 3.5             |
| 24282                   | Big Swamp    | 469754  | 6482379  | 1.03                             | 1.5                           | 3               |
| 24283                   | Big Swamp    | 469654  | 6480819  | 0.65                             | 1.3                           | 3               |
| 24284                   | Big Swamp    | 468684  | 6480309  | 0.66                             | 1.4                           | 3               |
| 24285                   | Big Swamp    | 467904  | 6479389  | 0.51                             | 2                             | 3               |
| 24286                   | Big Swamp    | 468854  | 6481039  | 0.72                             | 2                             | 3               |
| 24287                   | Big Swamp    | 468904  | 6482249  | 1.03                             | 2                             | 3               |
| 24294                   | Big Swamp    | 470004  | 6484489  | 0.66                             | 2.5                           | 4.5             |
| 24295                   | Big Swamp    | 471004  | 6484589  | 1.3                              | 1.9                           | 4               |
| 24296                   | Big Swamp    | 470704  | 6484289  | 1.5                              | 1.2                           | 3               |
| 24297                   | Big Swamp    | 467934  | 6480189  | 0.59                             | 2                             | 3               |

| eSPADE<br>Profile | Subcatchment           | Fasting | Northing | Surface<br>elevation | Total<br>profile | Minimum |
|-------------------|------------------------|---------|----------|----------------------|------------------|---------|
| ID                | Cubcatolinion          | Laoung  | lieiting | (m AHD)*             | depth (m)        | pH**    |
| 24300             | Big Swamp              | 466604  | 6478989  | 0.94                 | 1.4              | 6       |
| 24307             | Big Swamp              | 470804  | 6479839  | 1.53                 | 1.6              | 5       |
| 24308             | Big Swamp              | 470344  | 6479639  | 1.23                 | 0.9              | 3.5     |
| 33384             | Big Swamp              | 469014  | 6478946  | 2.23                 | 1.3              | 7.5     |
| 33385             | Big Swamp              | 471624  | 6479929  | 2.28                 | 1.5              | 7       |
| 16441             | Big Swamp              | 469418  | 6484829  | 0.91                 | 1.85             | 5       |
| 16442             | Big Swamp              | 471275  | 6480232  | 1.21                 | 2.6              | 4       |
| 16491             | Big Swamp              | 470737  | 6481171  | 1.54                 | 3.05             | 4.5     |
| 16492             | Big Swamp              | 469523  | 6481527  | 1.12                 | 3.15             | 4.5     |
| 24278             | Bukkan Bukkan<br>Creek | 460154  | 6471489  | 0.63                 | 2                | 3       |
| 24279             | Bukkan Bukkan<br>Creek | 460254  | 6471459  | 1.14                 | 1.5              | 3       |
| 16447             | Bukkan Bukkan<br>Creek | 459099  | 6471289  | 0.67                 | 1.6              | 5       |
| 22646             | Bukkan Bukkan<br>Creek | 460779  | 6471359  | 0.95                 | 2                | 5.7     |
| 22647             | Bukkan Bukkan<br>Creek | 460786  | 6471409  | 0.94                 | 1.92             | 4.8     |
| 22648             | Bukkan Bukkan<br>Creek | 460467  | 6471290  | 0.68                 | 1.4              | 3.8     |
| 22649             | Bukkan Bukkan<br>Creek | 460520  | 6471773  | 0.98                 | 1.4              | 3.6     |
| 22650             | Bukkan Bukkan<br>Creek | 460094  | 6471439  | 0.61                 | 1.5              | 3.6     |
| 22651             | Bukkan Bukkan<br>Creek | 459674  | 6471534  | 0.51                 | 2.5              | 3.5     |
| 22652             | Bukkan Bukkan<br>Creek | 459404  | 6471589  | 0.71                 | 2                | 3.4     |
| 24930             | Bukkan Bukkan<br>Creek | 458962  | 6471953  | 2.96                 | 2.5              | 5.7     |
| 24935             | Bukkan Bukkan<br>Creek | 459098  | 6472353  | 0.59                 | 2.2              | 6.2     |
| 24936             | Bukkan Bukkan<br>Creek | 459160  | 6472413  | 0.79                 | 2                | 6.2     |
| 24937             | Bukkan Bukkan<br>Creek | 459220  | 6472462  | 2.35                 | 2                | 6.9     |
| 24938             | Bukkan Bukkan<br>Creek | 459308  | 6472515  | 1.6                  | 1.5              | 6.6     |
| 24941             | Bukkan Bukkan<br>Creek | 459602  | 6472603  | 2.04                 | 2.5              | 7.5     |
| 24942             | Bukkan Bukkan<br>Creek | 459722  | 6472631  | 2.24                 | 2.5              | 7.4     |
| 24943             | Bukkan Bukkan<br>Creek | 459825  | 6472678  | 1.84                 | 2                | 8.2     |
| 24944             | Bukkan Bukkan<br>Creek | 459941  | 6472702  | 1.65                 | 1.5              | 7.7     |
| 24945             | Bukkan Bukkan<br>Creek | 460044  | 6472725  | 1.54                 | 2                | 6.6     |
| 24946             | Bukkan Bukkan<br>Creek | 460134  | 6472746  | 1.49                 | 2                | 8.4     |

| eSPADE<br>Profile<br>ID | Subcatchment           | Easting | Northing | Surface<br>elevation<br>(m AHD)* | Total<br>profile<br>depth (m) | Minimum<br>pH** |
|-------------------------|------------------------|---------|----------|----------------------------------|-------------------------------|-----------------|
| 24947                   | Bukkan Bukkan<br>Creek | 460239  | 6472748  | 1.25                             | 2.5                           | 7.9             |
| 24948                   | Bukkan Bukkan<br>Creek | 460326  | 6472789  | 1.68                             | 1.5                           | 6.9             |
| 7934                    | Cattai Creek           | 464304  | 6477489  | 0.96                             | 0.6                           | 4.5             |
| 24299                   | Cattai Creek           | 465954  | 6475909  | 1.02                             | 1.3                           | 3.5             |
| 24301                   | Cattai Creek           | 466874  | 6478139  | 1.09                             | 1.25                          | 5               |
| 24302                   | Cattai Creek           | 465964  | 6477089  | 0.92                             | 2.3                           | 5               |
| 20523                   | Cattai Creek           | 463404  | 6478789  | 1.27                             | 0.65                          | 5.5             |
| 21571                   | Cattai Creek           | 463791  | 6477752  | 1.73                             | 1.4                           | 5.7             |
| 21572                   | Cattai Creek           | 463594  | 6477751  | 0.83                             | 1.7                           | 5.2             |
| 21573                   | Cattai Creek           | 463340  | 6477271  | 1.27                             | 2                             | 6               |
| 21574                   | Cattai Creek           | 463344  | 6477269  | 1.21                             | 2.5                           | 6.2             |
| 21585                   | Cattai Creek           | 463264  | 6477137  | 2.38                             | 2.2                           | 4.1             |
| 21586                   | Cattai Creek           | 463390  | 6477347  | 1.05                             | 1.1                           | 6.2             |
| 21587                   | Cattai Creek           | 463430  | 6477427  | 1.18                             | 1.1                           | 6.7             |
| 21588                   | Cattai Creek           | 463477  | 6477525  | 1.1                              | 1.5                           | 4.5             |
| 21589                   | Cattai Creek           | 463528  | 6477629  | 0.95                             | 1.6                           | 5.1             |
| 21591                   | Cattai Creek           | 463753  | 6477993  | 1.47                             | 1.4                           | 4.9             |
| 21592                   | Cattai Creek           | 463794  | 6478076  | 1.3                              | 1.8                           | 4.9             |
| 21593                   | Cattai Creek           | 463838  | 6478159  | 1.41                             | 1.6                           | 6.4             |
| 21598                   | Cattai Creek           | 464007  | 6478626  | 1.24                             | 1                             | 3.7             |
| 21606                   | Cattai Creek           | 463827  | 6477925  | 0.98                             | 1.4                           | 3.3             |
| 24314                   | Coopernook             | 462354  | 6479339  | 0.51                             | 1.75                          | 4               |
| 24315                   | Coopernook             | 461604  | 6478689  | 0.59                             | 1.9                           | 3.5             |
| 21575                   | Coopernook             | 462782  | 6478168  | 0.56                             | 0.65                          | 4.3             |
| 7986                    | Croakers Creek         | 460779  | 6468164  | 2.2                              | 2.1                           | 5               |
| 16446                   | Croakers Creek         | 460154  | 6467989  | 0.48                             | 2.28                          | 4.5             |
| 16512                   | Croakers Creek         | 461674  | 6466449  | 1.55                             | 2.7                           | 5               |
| 19017                   | Dawson River           | 451764  | 6471139  | 1.15                             | 3                             | 5.5             |
| 19018                   | Dawson River           | 449114  | 6475064  | 2.94                             | 2.1                           | 6               |
| 16450                   | Dumaresq Island        | 453552  | 6469884  | 0.56                             | 2.9                           | 5               |
| 19016                   | Dumaresq Island        | 452074  | 6470139  | 1.43                             | 3.1                           | 5               |
| 22337                   | Dumaresq Island        | 455029  | 6469064  | 1.46                             | 1.22                          | 6               |
| 22338                   | Dumaresq Island        | 454104  | 6469089  | 1.11                             | 1                             | 6               |
| 24303                   | Ghinni Ghinni          | 455654  | 6474309  | 0.99                             | 1.25                          | 3.5             |
| 24304                   | Ghinni Ghinni          | 455904  | 6473889  | 0.91                             | 1.7                           | 3.5             |
| 24305                   | Ghinni Ghinni          | 457024  | 6474239  | 0.71                             | 1.55                          | 4               |
| 24306                   | Ghinni Ghinni          | 457654  | 6473539  | 0.92                             | 1.6                           | 4               |
| 16444                   | Ghinni Ghinni          | 458284  | 6475218  | 0.96                             | 3.6                           | 4               |
| 16448                   | Ghinni Ghinni          | 456366  | 6471005  | 1.02                             | 2.13                          | 4.5             |
| 16508                   | Ghinni Ghinni          | 454904  | 6475564  | 1.17                             | 2.6                           | 3.5             |
| 22336                   | Ghinni Ghinni          | 456333  | 6470564  | 1.78                             | 0.93                          | 7               |
| 22342                   | Ghinni Ghinni          | 457604  | 6472289  | 1.71                             | 1.03                          | 8               |

| eSPADE<br>Profile<br>ID | Subcatchment     | Easting | Northing | Surface<br>elevation<br>(m AHD)* | Total<br>profile<br>depth (m) | Minimum<br>pH** |
|-------------------------|------------------|---------|----------|----------------------------------|-------------------------------|-----------------|
| 22343                   | Ghinni Ghinni    | 457329  | 6470889  | 1.26                             | 1                             | 6               |
| 22347                   | Ghinni Ghinni    | 456579  | 6471264  | 1.25                             | 1.03                          | 6               |
| 24914                   | Ghinni Ghinni    | 457451  | 6470953  | 2.58                             | 3                             | 7.5             |
| 24915                   | Ghinni Ghinni    | 457467  | 6471061  | 2.37                             | 1.5                           | 7.3             |
| 24918                   | Ghinni Ghinni    | 457558  | 6471358  | 2.39                             | 2                             | 8.9             |
| 24919                   | Ghinni Ghinni    | 457609  | 6471429  | 1.75                             | 2.4                           | 6.2             |
| 24920                   | Ghinni Ghinni    | 457646  | 6471492  | 2.74                             | 2.5                           | 7.8             |
| 24923                   | Ghinni Ghinni    | 457874  | 6471604  | 1.72                             | 1.5                           | 7.4             |
| 24924                   | Ghinni Ghinni    | 457976  | 6471663  | 0.62                             | 2.8                           | 6.3             |
| 73173                   | Glenthorne       | 449176  | 6468485  | 2.42                             | 2.3                           | 5               |
| 19014                   | Glenthorne       | 450434  | 6467744  | 0.96                             | 2.8                           | 4               |
| 19015                   | Glenthorne       | 450684  | 6469139  | 1.52                             | 2.95                          | 6.5             |
| 7983                    | Jones Island     | 460054  | 6473939  | 1.82                             | 2.1                           | 7               |
| 16443                   | Jones Island     | 462731  | 6477397  | 0.66                             | 2.58                          | 4.5             |
| 21576                   | Jones Island     | 462832  | 6476275  | 1.75                             | 1.1                           | 3.5             |
| 21578                   | Jones Island     | 462907  | 6476517  | 2.13                             | 1.8                           | 4.8             |
| 21579                   | Jones Island     | 462945  | 6476606  | 2.04                             | 2.6                           | 4.5             |
| 21581                   | Jones Island     | 463049  | 6476856  | 1.07                             | 1.2                           | 3.6             |
| 21582                   | Jones Island     | 463086  | 6476932  | 1.77                             | 1.8                           | 5.6             |
| 21583                   | Jones Island     | 463127  | 6476659  | 1.01                             | 0.7                           | 4.2             |
| 24970                   | Jones Island     | 462202  | 6473995  | 1                                | 2.5                           | 5.5             |
| 24971                   | Jones Island     | 462218  | 6474082  | 1.18                             | 2                             | 5.8             |
| 24972                   | Jones Island     | 462273  | 6474186  | 1.28                             | 2                             | 6.5             |
| 24973                   | Jones Island     | 462312  | 6474273  | 1.14                             | 2                             | 5.7             |
| 24974                   | Jones Island     | 462373  | 6474367  | 0.92                             | 1.5                           | 6.3             |
| 24975                   | Jones Island     | 462435  | 6474463  | 0.81                             | 1.5                           | 6.3             |
| 24977                   | Jones Island     | 462571  | 6474634  | 0.69                             | 2                             | 5.1             |
| 24978                   | Jones Island     | 462592  | 6474708  | 0.38                             | 1.5                           | 5.9             |
| 24979                   | Jones Island     | 462206  | 6473825  | 1.9                              | 2                             | 6.1             |
| 24982                   | Jones Island     | 462189  | 6473909  | 0.97                             | 1.1                           | 6.1             |
| 33389                   | Mambo Island     | 463320  | 6475699  | 2.88                             | 2.15                          | 7               |
| 16495                   | Mambo Island     | 464988  | 6475903  | 0.86                             | 2.2                           | 5               |
| 16496                   | Mambo Island     | 465099  | 6475849  | 0.41                             | 1.4                           | 4               |
| 70311                   | Mambo Island     | 465044  | 6476129  | 0.69                             | 1.1                           | 6               |
| 16452                   | Mitchells Island | 467079  | 6470686  | 1.5                              | 0.9                           | 8.5             |
| 16453                   | Mitchells Island | 465554  | 6468814  | 1.68                             | 1.1                           | 6               |
| 16454                   | Mitchells Island | 464223  | 6468659  | 1.14                             | 1.75                          | 6               |
| 16510                   | Mitchells Island | 463269  | 6470019  | 1.2                              | 2.2                           | 4.5             |
| 16511                   | Mitchells Island | 464954  | 6471124  | 2.18                             | 2.2                           | 5.5             |
| 24289                   | Moto             | 458304  | 6476789  | 1.12                             | 1.9                           | 3.5             |
| 24290                   | Moto             | 461354  | 6476989  | 0.6                              | 1.2                           | 3               |
| 24291                   | Moto             | 459604  | 6478739  | 1.03                             | 1.4                           | 3               |
| 24292                   | Moto             | 459904  | 6479489  | 0.89                             | 2                             | 3.5             |
| 24293                   | Moto             | 458954  | 6480409  | 1.26                             | 1.8                           | 3.5             |

| eSPADE<br>Profile<br>ID | Subcatchment | Easting | Northing | Surface<br>elevation<br>(m AHD)* | Total<br>profile<br>depth (m) | Minimum<br>pH** |
|-------------------------|--------------|---------|----------|----------------------------------|-------------------------------|-----------------|
| 24309                   | Moto         | 458804  | 6479309  | 0.8                              | 1.9                           | 3.5             |
| 24310                   | Moto         | 458704  | 6478649  | 0.79                             | 2                             | 3.5             |
| 24311                   | Moto         | 458524  | 6477689  | 0.95                             | 1.5                           | 3.5             |
| 24312                   | Moto         | 457704  | 6479589  | 1.43                             | 1.85                          | 5               |
| 24313                   | Moto         | 459824  | 6476859  | 0.82                             | 1.2                           | 3.5             |
| 16445                   | Moto         | 458929  | 6475988  | 1.66                             | 1.57                          | 5               |
| 16461                   | Moto         | 460452  | 6479869  | 1.26                             | 2.4                           | 4.5             |
| 16462                   | Moto         | 461235  | 6477183  | 0.66                             | 2.65                          | 4               |
| 16507                   | Moto         | 456629  | 6482764  | 1.51                             | 2.9                           | 5.5             |
| 70310                   | Moto         | 460540  | 6476279  | 1.03                             | 1                             | 4.2             |
| 73169                   | Taree Estate | 446218  | 6467829  | 0.52                             | 1.2                           | 5.5             |

#### D3.2 Other literature

Published and grey literature was investigated for other soil profiles within the Manning River floodplain, which included data from previous WRL investigations undertaken on behalf of MidCoast Council (Glamore et al., 2016; Ruprecht et al., 2020b; WRL, 2019). Only literature that provided information on pH at depth and suitable location information was included. Where no surface elevation data was provided, it was extracted from a 1 m DEM of the Manning floodplain. A summary of the soil profile data, including approximate surface elevation and minimum profile pH (within the tidal range), is provided in Table D-2.

Table D-2: Summary of relevant soil profiles from literature

| Profile                                  | Subcatchment | Easting | Northing | Surface<br>Elevation<br>(m AHD) | Total<br>Profile<br>Depth (m) | Minimum<br>pH |
|------------------------------------------|--------------|---------|----------|---------------------------------|-------------------------------|---------------|
| WRL_2018_1                               | Big Swamp    | 471453  | 6480109  | 0.87                            | 2                             | 3.98          |
| WRL_2018_2                               | Big Swamp    | 470137  | 6479625  | 0.86                            | 1.3                           | 4.23          |
| WRL_2018_3                               | Big Swamp    | 471182  | 6480203  | 0.75                            | 2                             | 4.29          |
| WRL_2018_4                               | Big Swamp    | 469436  | 6480515  | 0.55                            | 2                             | 4.78          |
| SP01<br>(Ruprecht et al., 2020b)<br>SP02 | Pampoolah    | 454817  | 6466654  | 1.17                            | 2.9                           | 4.3           |
| (Ruprecht et al., 2020b)                 | Pampoolah    | 455082  | 6466560  | 1.13                            | 3                             | 5             |
| SP03<br>(Ruprecht et al., 2020b)         | Pampoolah    | 455675  | 6466368  | 0.86                            | 2.5                           | 4.4           |
| (Ruprecht et al., 2020b)                 | Pampoolah    | 454484  | 6466420  | 1.06                            | 3                             | 4.8           |
| (Ruprecht et al., 2020b)                 | Pampoolah    | 455037  | 6467043  | 1.30                            | 3                             | 4.5           |
| SP06<br>(Ruprecht et al., 2020b)         | Pampoolah    | 454552  | 6467533  | 0.73                            | 3                             | 5.2           |

#### D4 Field campaign

Glamore et al. (2016) completed a targeted field campaign which was undertaken to collect data in areas with limited information. The location of soil profiles collected for this study is shown in Figure D-2, and a summary of the soil profile data, including approximate surface elevation and minimum profile pH

(within the tidal range), is provided in Table D-3. Detailed profile datasheets can be found in Glamore et al. (2016).



#### Figure D-2: Location of soil profiles from Glamore et al. (2016) field investigations

| Profile | Subcatchment        | Easting | Northing | Surface<br>Elevation<br>(m AHD) | Total<br>Profile<br>Depth (m) | Minimum<br>pH |
|---------|---------------------|---------|----------|---------------------------------|-------------------------------|---------------|
| P23     | Bukkan Bukkan Creek | 456883  | 6467774  | 0.97                            | 3                             | 5.6           |
| P20     | Bukkan Bukkan Creek | 459426  | 6471356  | 0.29                            | 3.3                           | 4.3           |
| P19     | Bukkan Bukkan Creek | 459336  | 6470739  | 0.45                            | 3                             | 4.4           |
| P02     | Cattai Creek        | 463911  | 6476789  | 0.62                            | 3                             | 4.8           |
| P07     | Coopernook          | 461339  | 6480331  | 0.75                            | 3                             | 3.7           |
| P06     | Coopernook          | 461607  | 6479058  | 0.27                            | 3                             | 3.6           |
| P21     | Croakers Creek      | 461883  | 6466644  | 0.77                            | 3                             | 4.1           |
| P32     | Dawson River        | 452535  | 6472162  | 1.16                            | 2.4                           | 4.4           |
| P31     | Dawson River        | 451360  | 6471681  | 0.40                            | 2.4                           | 5.3           |
| P28     | Dumaresq Island     | 454543  | 6469781  | 0.97                            | 1.6                           | 4.3           |
| P17     | Ghinni Ghinni       | 456277  | 6473639  | 0.67                            | 3                             | 3.8           |
| P16     | Ghinni Ghinni       | 456695  | 6474576  | 0.70                            | 2.4                           | 3.4           |
| P38     | Glenthorne          | 449483  | 6467453  | 1.07                            | 3.5                           | 4.1           |
| P15     | Jones Island        | 462964  | 6475684  | 0.35                            | 3                             | 4.2           |
| P13     | Jones Island        | 462540  | 6477353  | 0.34                            | 3                             | 3.5           |
| P04     | Mambo Island        | 465067  | 6475309  | 0.65                            | 3                             | 4.2           |

| Table D-3: Summar | ry of relevant soil | profiles from | Glamore et al. | (2016) | ) field investigation | ons |
|-------------------|---------------------|---------------|----------------|--------|-----------------------|-----|
|-------------------|---------------------|---------------|----------------|--------|-----------------------|-----|

| Profile | Subcatchment     | Easting | Northing | Surface<br>Elevation<br>(m AHD) | Total<br>Profile<br>Depth (m) | Minimum<br>pH |
|---------|------------------|---------|----------|---------------------------------|-------------------------------|---------------|
| P35     | Mitchells Island | 462432  | 6473145  | 1.33                            | 2.4                           | 6.2           |
| P34     | Mitchells Island | 461584  | 6469935  | 0.64                            | 3                             | 5.1           |
| P22     | Mitchells Island | 461054  | 6469226  | 0.78                            | 2                             | 6.3           |
| P12     | Moto             | 461105  | 6477669  | 0.29                            | 3                             | 3.0           |
| P11     | Moto             | 461266  | 6476011  | 0.88                            | 2.4                           | 3.8           |
| P30     | Pampoolah        | 455522  | 6466707  | 1.25                            | 3.1                           | 4.9           |
| P29     | Pampoolah        | 456246  | 6465072  | 0.97                            | 2.5                           | 4.4           |
| P37     | Taree Estate     | 445804  | 6467171  | 2.12                            | 1.7                           | 6.2           |
| P36     | Taree Estate     | 446219  | 6466901  | 3.27                            | 2.3                           | 5.8           |

### D5 Summary of soil acidity for prioritisation

Section 4 of the Methods report (Rayner et al., 2023) summarises the method for prioritising subcatchments for acid generation. There are two key pieces of information that are used to determine the pH factor used in the priority assessment that can be derived from the ASS data:

- Depth averaged hydrogen ion concentration (related to soil pH); and
- The contributing depth.

All else being equal, a higher hydrogen concentration (i.e. more acidic) and larger contributing depth is an indicator of a greater potential for acid generation and export. More information on how these are calculated can be found in Section 4 of the Methods report (Rayner et al., 2023). These are multiplied together to get the pH factor which forms part of the final prioritisation. Table D-4 summarises the information per subcatchment in the Manning River floodplain.

| Subcatchment        | Depth<br>averaged H+<br>concentration<br>(µmol/L) | Contributing depth (m) | pH factor | Number<br>of soil<br>profiles<br>available |
|---------------------|---------------------------------------------------|------------------------|-----------|--------------------------------------------|
| Big Swamp           | 198.2                                             | 1.2                    | 237.9     | 25                                         |
| Bukkan Bukkan Creek | 59.3                                              | 1.2                    | 71.2      | 26                                         |
| Cattai Creek        | 38.9                                              | 1.2                    | 46.7      | 20                                         |
| Coopernook          | 102.8                                             | 0.8                    | 82.2      | 5                                          |
| Croakers Creek      | 15.9                                              | 1.2                    | 19.1      | 4                                          |
| Dawson River        | 7.2                                               | 1.2                    | 8.6       | 4                                          |
| Dumaresq Island     | 3.0                                               | 1.2                    | 3.7       | 5                                          |
| Ghinni Ghinni       | 71.5                                              | 1.2                    | 85.8      | 20                                         |
| Glenthorne          | 27.7                                              | 1.2                    | 33.2      | 4                                          |
| Jones Island        | 31.0                                              | 1.2                    | 37.2      | 20                                         |
| Mambo Island        | 14.2                                              | 1.2                    | 17.0      | 5                                          |
| Mitchells Island    | 3.9                                               | 1.2                    | 4.7       | 8                                          |
| Moto                | 193.7                                             | 1.2                    | 232.4     | 17                                         |
| Pampoolah           | 16.6                                              | 1.2                    | 19.9      | 8                                          |
| Taree Estate        | 1.3                                               | 1.2                    | 1.6       | 3                                          |

#### Table D-4: Summary of information from soil acidity information

### E1 Preamble

This section provides an overview of the data used to develop the elevation thresholds for the prioritisation of blackwater generation potential for floodplain subcatchments in the Manning River. The water level analysis undertaken is described in detail in Section 6 of the Methods report (Rayner et al., 2023).

### E2 Water level gauges

There are seven (7) water level gauges operated by NSW DPIE Manly Hydraulics Laboratory (MHL) in the Manning River estuary that have been used for the analysis of critical thresholds for blackwater generation. The location of the gauges is shown in Figure E-1 and detailed in Table E-1. Water level data has been provided on a 15 minute time step throughout each monitoring period, although intermittent data gaps do occur.



Figure E-1: Locations of water level gauges used for blackwater elevation thresholds

| Station         | Chainage<br>(km from entrance/<br>downstream confluence) | Length of record<br>(years)* | Mean High Water<br>(MHW) (m AHD) |
|-----------------|----------------------------------------------------------|------------------------------|----------------------------------|
| Harrington      | 0.5 (Manning River)                                      | 28.5                         | 0.4                              |
| Croki           | 11.9 (Manning River)<br>8.6 (Scotts Creek)               | 27.7                         | 0.4                              |
| Dumaresq Island | 21.5 (Manning River)<br>10.8 (South Channel)             | 17.7                         | 0.4                              |
| Taree           | 27.9 (Manning River)                                     | 33.3                         | 0.5                              |
| Taree West      | 36.8 (Manning River)                                     | 10.0                         | 0.5                              |
| Farquhar Inlet  | 0 (Scotts Creek)<br>1.1 (South Channel)                  | 32.0                         | 0.4                              |

#### Table E-1: Details of water level gauges

\* Excluding data gaps of greater than 6 hours.

Water level time series data at each gauge was analysed to establish a range of levels which can be applied to each floodplain subcatchment whereby the potential for prolonged inundation can be assessed. This is then related to floodplain topography and land use to prioritise blackwater generation across the floodplain. The analysis of the water level time series data is undertaken 25 times, to account for events that happen on average every 1, 2, 3, 4 and 5 years as well as events that result in inundation for 1, 2, 3, 4 and 5 days at a time. As a result, there can be up to 25 unique elevations at each gauge (noting that the minimum allowable level is mean high water (MHW)). The range of levels from this analysis, as well as the median and mean levels are shown in Table E-2.

| Station         | Minimum level<br>(m AHD) | Median level<br>(m AHD) | Mean level<br>(m AHD) | Maximum level<br>(m AHD) |
|-----------------|--------------------------|-------------------------|-----------------------|--------------------------|
| Harrington      | 0.4                      | 0.4                     | 0.4                   | 0.5                      |
| Croki           | 0.4                      | 0.6                     | 0.7                   | 1.6                      |
| Dumaresq Island | 0.4                      | 0.7                     | 0.9                   | 2                        |
| Taree           | 0.5                      | 0.6                     | 0.8                   | 2.2                      |
| Taree West      | 0.5                      | 1                       | 1.6                   | 4.6                      |
| Farquhar Inlet  | 0.4                      | 0.5                     | 0.7                   | 1.3                      |

Table E-2: Representative water level elevations at each water level gauge

### **E3** Subcatchment elevation thresholds

The subcatchments of the Manning River floodplain are shown in Figure E-1. For some of these catchments, the primary discharge point at the main river is sufficiently close to one of the water level gauges that the gauge well represents the downstream boundary condition. For other subcatchments, the main discharge points are located away from the available water level gauges. In these cases, the chainage along the river of the major discharge point has been measured, and the critical elevations have been interpolated between gauges. The water level stations used for each subcatchment is shown in Table E-3, as well as the interpolation used where required.

The range of levels, as well as the median and mean levels, at each subcatchment are shown in Table E-4. Figure E-2 shows spatially the area covered by the median elevation thresholds in each subcatchment.

| Subcatchment        | Water level station(s) used                    |
|---------------------|------------------------------------------------|
| Harrington          | Harrington                                     |
| Mitchells Island    | 0.71 x Harrington + 0.29 x Croki               |
| Cattai Creek        | 0.30 x Harrington + 0.70 x Croki               |
| Big Swamp*          | Assumed the same levels as Cattai Creek        |
| Mambo Island        | 0.28 x Harrington + 0.72 x Croki               |
| Moto                | 0.22 x Harrington + 0.78 x Croki               |
| Coopernook*         | Assumed to be the same as Moto                 |
| Ghinni Ghinni       | 0.65 x Croki + 0.65 x Dumaresq Island          |
| Jones Island        | Croki                                          |
| Dumaresq Island     | Dumaresq Island                                |
| Dawson River        | Dumaresq Island                                |
| Glenthorne          | Dumaresq Island                                |
| Taree Estate        | 0.67 x Taree + 0.33 x Taree West               |
| Old Bar             | Farquhar Inlet                                 |
| Croakers Creek      | Farquhar Inlet                                 |
| Bukkan Bukkan Creek | 0.34 x Farquhar Inlet + 0.66 x Croki           |
| Pampoolah           | 0.34 x Farquhar Inlet + 0.66 x Dumaresq Island |

Table E-3: Water level stations and subcatchments

\* Neither Big Swamp or Coopernook are located on the main river channel or well represented by an individual water level gauge. Both have been assumed to be the same as the closest subcatchment

| Subcatchment        | Minimum<br>level<br>(m AHD) | Median<br>level<br>(m AHD) | Mean level<br>(m AHD) | Maximum<br>level<br>(m AHD) |
|---------------------|-----------------------------|----------------------------|-----------------------|-----------------------------|
| Harrington          | 0.4                         | 0.4                        | 0.4                   | 0.5                         |
| Mitchells Island    | 0.4                         | 0.5                        | 0.5                   | 0.8                         |
| Cattai Creek        | 0.4                         | 0.5                        | 0.6                   | 1.3                         |
| Big Swamp*          | 0.4                         | 0.5                        | 0.6                   | 1.3                         |
| Mambo Island        | 0.4                         | 0.5                        | 0.6                   | 1.3                         |
| Moto                | 0.4                         | 0.6                        | 0.7                   | 1.4                         |
| Coopernook          | 0.4                         | 0.6                        | 0.7                   | 1.4                         |
| Ghinni Ghinni       | 0.4                         | 0.7                        | 0.8                   | 1.7                         |
| Jones Island        | 0.4                         | 0.6                        | 0.7                   | 1.6                         |
| Dumaresq Island     | 0.4                         | 0.7                        | 0.9                   | 2                           |
| Dawson River        | 0.4                         | 0.7                        | 0.9                   | 2                           |
| Glenthorne          | 0.4                         | 0.7                        | 0.9                   | 2                           |
| Taree Estate        | 0.5                         | 0.7                        | 1.1                   | 3                           |
| Old Bar             | 0.4                         | 0.5                        | 0.7                   | 1.3                         |
| Croakers Creek      | 0.4                         | 0.5                        | 0.7                   | 1.3                         |
| Bukkan Bukkan Creek | 0.4                         | 0.6                        | 0.7                   | 1.5                         |
| Pampoolah           | 0.4                         | 0.6                        | 0.8                   | 1.7                         |

#### Table E-4: Representative elevations at each subcatchment in the Manning River floodplain



Figure E-2: Areas in the Manning River floodplain below the median elevation threshold

### Appendix F Floodplain infrastructure

#### F1 Preamble

A range of floodplain infrastructure exists across the Manning River floodplain for the purpose of drainage and inundation protection (tidal and flooding). Included within this infrastructure is a number of structures that have been modified to improve water quality and aquatic connectivity across the floodplain. Floodplain infrastructure includes:

- Floodgates;
- Culverts or pipes;
- Weirs; and
- Levees.

The following section provides information on floodplain infrastructure for the Manning River floodplain. This includes the data identified and collected by Glamore et al. (2016) as well as data collected for this study in 2019/2020. Data tables containing information on floodplain infrastructure are provided.

#### F2 Infrastructure tenure

Information on the tenure of EOS structures across the Manning River floodplain is shown in Figure F-1.





### **F3** Infrastructure terminology

The following section provides a number of figures which describe common types of floodplain infrastructure used to control water movement across the floodplain. These figures include descriptions for common terminology used to describe infrastructure.



Figure F-2: Example of culverts controlling water in an agricultural drain



Figure F-3: Example of floodgate and sluice structures which can be fitted to culverts to control flow using a winch



Figure F-4: Example of (a) a floodgate structure ensuring water levels upstream of a levee remain at the low tide level and (b) a levee preventing tidal inundation of the floodplain



Figure F-5: Example of a weir ensuring a raised water level on the upstream side



Figure F-6: Example of a drop board structure which can be used to control water levels and prevent inundation



Figure F-7: Example of a buoyancy tidal gate that lets a controlled level of tidal water upstream of the structure (green) before closing due to a buoyancy mechanism and preventing further water ingress (blue)

### F4 Data from Glamore et al. (2016)

Glamore et al. (2016) provided a summary of the data available of floodplain prior to the *Lower Manning River Remediation Action Plan.* At the time, the most recent survey of floodgates in the Manning River was completed by the NSW Department of Primary Industries (Fisheries) in 2006 and revealed that there were approximately 140 floodgates located within the MidCoast Council LGA. The majority of the floodgates are located in Pipeclay Canal-Cattai Creek, Dickensons Creek, Ghinni Ghinni Creek, Scotts

Creek, and the Lansdowne River. While some of the floodgates in the LGA are owned by MidCoast Council and the drainage unions of Moto and Oxley Island, the majority of the floodgates are owned by private land holders. The distribution of floodgates located within the study area is presented in Figure F-8 and a summary of the available floodgate data is provided in Table F-1.

Note that the survey completed by Fisheries in 2006 did not include any invert levels of the drainage structures across the LGA. Glamore et al. (2016) also completed a field survey on 26 November 2015 of key floodgates in Scotts Creek, Cattai Creek, and the Lansdowne River. The field survey was undertaken to assess the floodgate condition and to obtain drain invert levels. Where possible, floodgate structures and culvert inverts were surveyed to AHD using Trimble RTK-GPS survey gear. A summary of the field survey completed by Glamore et al. (2016) is provided in Table F-2.



Figure F-8: Floodgates located within the study area

| ID       | Easting<br>(m) | Northing<br>(m) | Туре      | Details             | Condition |
|----------|----------------|-----------------|-----------|---------------------|-----------|
| MANN140F | 463006.0       | 6478255.3       | Floodgate | Steel concrete      |           |
| MANN141F | 456522.5       | 6473451.2       | Floodgate | Concrete            |           |
| MANN120F | 470073.2       | 6484245.7       | Floodgate | Concrete and timber | Fair      |
| MANN121F | 469889.8       | 6483474.9       | Floodgate | Concrete and timber | Fair      |
| MANN122F | 469836.3       | 6483459.5       | Floodgate | Concrete and timber | Fair      |
| MANN123F | 469917.4       | 6483444.5       | Floodgate | Concrete and timber | Fair      |
| MANN124F | 469886.7       | 6483438.8       | Floodgate | Concrete and timber | Fair      |
| MANN125F | 469880.1       | 6483430.2       | Floodgate | Concrete and timber | Fair      |
| MANN126F | 469910.3       | 6483426.2       | Floodgate | Concrete and timber | Poor      |
| MANN127F | 469669.9       | 6482521.6       | Floodgate | Concrete and timber | Fair      |
| MANN128F | 469601.7       | 6482214.8       | Floodgate | Concrete and timber | Poor      |
| MANN059F | 459342.4       | 6481869.9       | Floodgate | Concrete and fibro  | Poor      |
| MANN129F | 469493.4       | 6481715.3       | Floodgate | Concrete and timber | Poor      |
| MANN058F | 459799.6       | 6481620.5       | Floodgate | Timber and fibro    | Poor      |
| MANN057F | 460262.7       | 6481585.4       | Floodgate | Concrete and fibro  | Poor      |
| MANN060F | 458634.6       | 6481411.2       | Floodgate | Concrete and fibro  | Good      |
| MANN096F | 458942.8       | 6481292.8       | Floodgate | Concrete and fibro  | Fair      |
| MANN095F | 459053.5       | 6481208.2       | Floodgate | Concrete and fibro  | Fair      |
| MANN130F | 469293.0       | 6481029.4       | Floodgate | Concrete and timber | Fair      |
| MANN004F | 460628.1       | 6480667.8       | Floodgate | Concrete and timber | Poor      |
| MANN003F | 460632.6       | 6480661.5       | Floodgate | Timber              | Poor      |
| MANN119F | 466605.1       | 6480346.0       | Floodgate | Concrete and steel  | Fair      |
| MANN056F | 460570.3       | 6480234.3       | Floodgate | Concrete and fibro  | Fair      |
| MANN131F | 468709.4       | 6480215.7       | Floodgate | -                   | -         |
| MANN001F | 460848.7       | 6479910.6       | Floodgate | Concrete and timber | Poor      |
| MANN002F | 460845.4       | 6479612.9       | Floodgate | Concrete and fibro  | Poor      |
| MANN132F | 468254.0       | 6479634.4       | Floodgate | -                   | -         |
| MANN033F | 460551.3       | 6479330.7       | Floodgate | Steel and fibro     | Fair      |
| MANN133F | 468046.9       | 6479344.3       | Floodgate | -                   | -         |
| MANN134F | 467742.9       | 6479301.9       | Floodgate | Concrete and timber | Poor      |
| MANN135F | 467692.3       | 6479270.4       | Floodgate | Concrete and timber | Poor      |
| MANN136F | 467417.4       | 6479240.9       | Floodgate | Concrete and timber | Fair      |
| MANN009F | 460631.1       | 6479196.7       | Floodgate | Concrete and timber | Poor      |
| MANN032F | 460382.2       | 6478822.2       | Floodgate | Concrete and steel  | Fair      |
| MANN031F | 460447.9       | 6478652.9       | Floodgate | Concrete and timber | Poor      |
| MANN030F | 460609.8       | 6478442.5       | Floodgate | Concrete and steel  | Fair      |
| MANN007F | 461378.6       | 6478431.0       | Floodgate | Concrete and timber | Poor      |
| MANN008F | 461074.1       | 6478403.3       | Floodgate | Concrete and timber | Poor      |
| MANN005F | 462568.9       | 6478392.0       | Floodgate | Concrete and fibro  | Poor      |
| MANN006F | 462119.5       | 6478376.7       | Floodgate | Concrete and timber | Poor      |
| MANN028F | 461109.5       | 6478250.6       | Floodgate | Concrete and steel  | Fair      |
| MANN029F | 460760.4       | 6478231.0       | Floodgate | Concrete and steel  | Fair      |
| MANN010F | 462638.4       | 6478216.8       | Floodgate | Concrete and fibro  | Poor      |

#### Table F-1: Summary of floodgate data provided by MidCoast Council

| ID       | Easting<br>(m) | Northing<br>(m) | Туре      | Details                 | Condition |
|----------|----------------|-----------------|-----------|-------------------------|-----------|
| MANN027F | 461817.1       | 6478040.6       | Floodgate | Concrete and steel      | Poor      |
| MANN098F | 462660.2       | 6477890.3       | Floodgate | Concrete and steel      | Fair      |
| MANN025F | 463091.9       | 6477820.0       | Floodgate | Steel                   | Good      |
| MANN051F | 466589.6       | 6477693.1       | Floodgate | Timber                  | Fair      |
| MANN050F | 466637.1       | 6477653.2       | Floodgate | Steel                   | Fair      |
| MANN026F | 461921.2       | 6477545.3       | Floodgate | Concrete and steel      | Good      |
| MANN055F | 462951.9       | 6477322.2       | Floodgate | Concrete and steel      | Fair      |
| MANN054F | 463260.3       | 6477155.4       | Floodgate | Concrete and steel      | Fair      |
| MANN024F | 461897.8       | 6477028.1       | Floodgate | Concrete and timber     | Poor      |
| MANN037F | 463133.8       | 6476832.5       | Floodgate | Concrete and steel      | Fair      |
| MANN097F | 462151.3       | 6476799.9       | Floodgate | Concrete and fibro      | Fair      |
| MANN100F | 464399.0       | 6476788.8       | Floodgate | Concrete and fiberglass | Fair      |
| MANN099F | 464193.8       | 6476705.6       | Floodgate | Concrete and fiberglass | Fair      |
| MANN053F | 463452.4       | 6476554.6       | Floodgate | Concrete and fibro      | Fair      |
| MANN103F | 462333.4       | 6476226.9       | Floodgate | Concrete and timber     | Fair      |
| MANN036F | 463134.1       | 6476222.9       | Floodgate | Steel and fibro         | Fair      |
| MANN023F | 462227.5       | 6476198.3       | Floodgate | Concrete and steel      | Fair      |
| MANN022F | 461845.6       | 6475801.5       | Floodgate | Concrete and timber     | Fair      |
| MANN048F | 465742.9       | 6475811.9       | Floodgate | Concrete and fibro      | Poor      |
| MANN049F | 465628.9       | 6475780.8       | Floodgate | Concrete and fibro      | Fair      |
| MANN061F | 461940.1       | 6475755.0       | Floodgate | Concrete and fibro      | Good      |
| MANN021F | 461320.8       | 6475683.4       | Floodgate | Concrete and steel      | Fair      |
| MANN101F | 463386.8       | 6475668.8       | Floodgate | Concrete and fibro      | Fair      |
| MANN035F | 463154.9       | 6475640.5       | Floodgate | Concrete and fibro      | Fair      |
| MANN020F | 460815.5       | 6475579.8       | Floodgate | Concrete and fibro      | Fair      |
| MANN107F | 461141.0       | 6475474.6       | Floodgate | Concrete                | Poor      |
| MANN034F | 463263.8       | 6475470.2       | Floodgate | Concrete and steel      | Fair      |
| MANN047F | 465507.3       | 6475467.8       | Floodgate | Concrete and fibro      | Fair      |
| MANN019F | 460398.4       | 6475235.4       | Floodgate | Steel and fibro         | Fair      |
| MANN046F | 465210.3       | 6475160.4       | Floodgate | Concrete and steel      | Poor      |
| MANN018F | 460412.5       | 6475062.0       | Floodgate | Timber                  | Poor      |
| MANN108F | 460510.9       | 6475044.4       | Floodgate | Concrete and timber     | Fair      |
| MANN045F | 465116.7       | 6474944.5       | Floodgate | Concrete and fibro      | Poor      |
| MANN052F | 464815.3       | 6474712.3       | Floodgate | Brick                   | Poor      |
| MANN102F | 462886.1       | 6474650.1       | Floodgate | Concrete and fibro      | Good      |
| MANN094F | 460346.1       | 6474404.9       | Floodgate | Concrete and fibro      | Fair      |
| MANN080F | 463615.8       | 6474273.6       | Floodgate | Concrete                | Poor      |
| MANN012F | 462759.7       | 6474244.4       | Floodgate | Concrete and fibro      | Poor      |
| MANN089F | 455885.8       | 6474214.5       | Floodgate | Timber                  | Good      |
| MANN017F | 456541.6       | 6474185.8       | Floodgate | Timber and fibro        | Poor      |
| MANN106F | 459954.1       | 6474181.3       | Floodgate | Concrete and timber     | Fair      |
| MANN090F | 456401.7       | 6474087.2       | Floodgate | Concrete and timber     | Good      |
| MANN014F | 457921.0       | 6474053.9       | Floodgate | Concrete and fibro      | Fair      |
| MANN081F | 464254.6       | 6474073.8       | Floodgate | Concrete and steel      | Poor      |

| ID       | Easting<br>(m) | Northing<br>(m) | Туре      | Details                 | Condition |
|----------|----------------|-----------------|-----------|-------------------------|-----------|
| MANN016F | 456967.7       | 6474036.1       | Floodgate | Concrete and fibreglass | Fair      |
| MANN015F | 457414.6       | 6473941.0       | Floodgate | Concrete and fibro      | Fair      |
| MANN013F | 462257.1       | 6473895.6       | Floodgate | Concrete                | Poor      |
| MANN093F | 456345.1       | 6473871.8       | Floodgate | Concrete                | Poor      |
| MANN063F | 457169.5       | 6473858.8       | Floodgate | Concrete and fibro      | Fair      |
| MANN079F | 464145.2       | 6473771.9       | Floodgate | Concrete and steel      | Poor      |
| MANN062F | 458554.8       | 6473711.4       | Floodgate | Concrete and fibro      | Fair      |
| MANN092F | 456299.7       | 6473662.5       | Floodgate | Concrete                | Poor      |
| MANN104F | 462058.0       | 6473588.2       | Floodgate | Concrete and timber     | Good      |
| MANN105F | 461917.0       | 6473516.2       | Floodgate | Concrete and timber     | Fair      |
| MANN067F | 460001.6       | 6473481.7       | Floodgate | Concrete and timber     | Fair      |
| MANN068F | 460558.6       | 6473372.2       | Floodgate | Concrete and fibro      | Fair      |
| MANN091F | 455811.4       | 6473284.4       | Floodgate | Concrete and timber     | Fair      |
| MANN070F | 460976.4       | 6473300.1       | Floodgate | Concrete and fibro      | Fair      |
| MANN069F | 460796.4       | 6473288.1       | Floodgate | Concrete                | Good      |
| MANN078F | 463393.8       | 6473263.9       | Floodgate | Concrete                | Poor      |
| MANN077F | 463414.7       | 6473263.7       | Floodgate | Concrete                | Poor      |
| MANN071F | 461155.4       | 6473211.3       | Floodgate | Concrete and fibro      | Fair      |
| MANN076F | 462476.6       | 6473157.7       | Floodgate | Concrete and steel      | Fair      |
| MANN039F | 460350.0       | 6473059.1       | Floodgate | Concrete and fibreglass | Fair      |
| MANN038F | 460675.0       | 6472981.6       | Floodgate | Concrete and fibro      | Fair      |
| MANN115F | 458196.3       | 6472460.7       | Floodgate | Concrete and timber     | Poor      |
| MANN116F | 458172.1       | 6472368.2       | Floodgate | Concrete                | Poor      |
| MANN082F | 464354.6       | 6471570.2       | Floodgate | Concrete and timber     | Fair      |
| MANN064F | 458003.0       | 6471522.1       | Floodgate | Concrete and fibro      | Fair      |
| MANN040F | 460941.9       | 6471334.1       | Floodgate | Concrete and fibreglass | Fair      |
| MANN075F | 461141.3       | 6471284.6       | Floodgate | Concrete and timber     | Fair      |
| MANN065F | 458130.9       | 6470570.4       | Floodgate | Concrete and fibro      | Fair      |
| MANN117F | 457484.4       | 6470379.4       | Floodgate | Concrete and timber     | Poor      |
| MANN084F | 461366.6       | 6470140.8       | Floodgate | Concrete and timber     | Fair      |
| MANN066F | 454548.7       | 6469860.8       | Floodgate | Concrete and fibro      | Fair      |
| MANN118F | 455810.2       | 6469668.5       | Floodgate | Concrete and steel      | Fair      |
| MANN111F | 454869.0       | 6469533.0       | Floodgate | Concrete                | Poor      |
| MANN114F | 451495.1       | 6469504.3       | Floodgate | Concrete and steel      | Fair      |
| MANN073F | 461440.2       | 6469305.7       | Floodgate | Concrete and steel      | Fair      |
| MANN109F | 456915.8       | 6469253.9       | Floodgate | Concrete and timber     | Poor      |
| MANN110F | 456879.0       | 6469243.9       | Floodgate | Concrete and timber     | Fair      |
| MANN085F | 461185.8       | 6469212.7       | Floodgate | Concrete and steel      | Fair      |
| MANN112F | 454630.3       | 6469046.7       | Floodgate | Concrete and fiberglass | Fair      |
| MANN113F | 454299.8       | 6469041.0       | Floodgate | Concrete and fiberglass | Good      |
| MANN138F | 461494.1       | 6468547.7       | Floodgate | Concrete                | Poor      |
| MANN139F | 448258.8       | 6468422.9       | Floodgate | Concrete and timber     | Poor      |
| MANN088F | 456007.5       | 6468353.3       | Floodgate | Concrete and timber     | Poor      |
| MANN087F | 455649.0       | 6468298.2       | Floodgate | Concrete                | Poor      |

| ID       | Easting<br>(m) | Northing<br>(m) | Туре      | Details             | Condition |
|----------|----------------|-----------------|-----------|---------------------|-----------|
| MANN137F | 454906.7       | 6468066.4       | Floodgate | Concrete            | Poor      |
| MANN083F | 463661.4       | 6467954.0       | Floodgate | Concrete and timber | Fair      |
| MANN074F | 463971.3       | 6467879.3       | Floodgate | Concrete            | Poor      |
| MANN072F | 462076.1       | 6467466.1       | Floodgate | Concrete and fibro  | Fair      |
| MANN086F | 456482.8       | 6467349.7       | Floodgate | Concrete and timber | Fair      |
| MANN043F | 461988.5       | 6466738.4       | Floodgate | Concrete and fibro  | Good      |
| MANN042F | 457048.0       | 6466614.0       | Floodgate | Concrete and steel  | Fair      |
| MANN041F | 457125.4       | 6466567.0       | Floodgate | Concrete and fibro  | Fair      |
| MANN044F | 461687.0       | 6466038.4       | Floodgate | Concrete and timber | Poor      |

#### Table F-2: Summary of floodgates assessed by Glamore et al. (2016)

| ID      | Easting<br>(m) | Northing<br>(m) | Invert<br>(m AHD) | Headwall Elevation (m<br>AHD) | Conditio<br>n |
|---------|----------------|-----------------|-------------------|-------------------------------|---------------|
| MANN044 | 461689.1       | 6466042.1       | 0.062             | 2.048                         | Good          |
| MANN043 | 461990.3       | 6466739.1       | -0.423            | 1.888                         | Good          |
| MANN074 | 463968.8       | 6467873.6       | 0.199             | 1.622                         | None          |
| MANN083 | 463661.4       | 6467954.0       | -                 | -                             | None          |
| MANN072 | 462076.1       | 6467466.1       | -                 | -                             | Unknown       |
| MANN138 | 461494.1       | 6468547.7       | -                 | -                             | Unknown       |
| MANN073 | 461440.2       | 6469305.7       | -                 | -                             | Unknown       |
| MANN084 | 461372.3       | 6470137.1       | -0.196            | 1.312                         | Good          |
| MANN040 | 460938.1       | 6471341.8       | 0.561             | 1.606                         | Good          |
| MANN081 | 464254.6       | 6474073.8       | -                 | -                             | None          |
| MANN052 | 464819.6       | 6474718.4       | 0.037             | 1.537                         | Good          |
| MANN045 | 465116.7       | 6474944.5       | -                 | -                             | Good          |
| MANN046 | 465210.3       | 6475160.4       | -                 | -                             | Good          |
| MANN047 | 465507.5       | 6475466.5       | 0.51              | 1.71                          | Good          |
| MANN057 | 460262.7       | 6481585.4       | -                 | -                             | None          |
| MANN004 | 460628.1       | 6480667.8       | -                 | -                             | Good          |
| MANN056 | 460570.3       | 6480234.3       | -                 | -                             | Good          |
| MANN001 | 460852.2       | 6479914.4       | 0.186             | 1.486                         | Fair          |
| MANN009 | 460631.1       | 6479196.7       | -                 | -                             | Good          |
| MANN032 | 460380.6       | 6478823.6       | -0.86             | 1.323                         | Good          |
| MANN031 | 460447.3       | 6478647.6       | -0.528            | 1.485                         | Good          |
| MANN030 | 460609.8       | 6478442.5       | -                 | -                             | Good          |
| MANN029 | 460760.4       | 6478231.0       | -                 | -                             | Good          |
| MANN028 | 461109.5       | 6478250.6       | -                 | -                             | Good          |
| MANN008 | 461066.7       | 6478406.5       | -0.1              | 1.659                         | Good          |
| MANN005 | 462568.9       | 6478392.0       | -0.557            | 1.348                         | Poor          |
| MANN025 | 463091.9       | 6477820.0       | -0.75             | 0.154                         | Good          |

#### F5 Additional data

For this updated study, a more comprehensive assessment of the vulnerability of floodplain infrastructure has been completed. This required additional data of dimensions and inverts of floodplain infrastructure across the Manning River floodplain. Table F-3 provides a summary of the additional data collected on floodplain infrastructure during the 2019 and 2020 field campaigns. In 2021, additional floodgate surveys were collected by Abbott & Macro to fill remaining data gaps. This data, along with other data from literature, or provided by MidCoast Council, is summarised in Table F-4. Structures that still lack good quality survey data are presented in Table F-5.

| Structure ID*        | Date/time<br>surveyed | Туре      | Number<br>of<br>Culverts | Diameter<br>(m) | Width<br>(m) | Height<br>(m) | Easting<br>(m)<br>GDA94 | Northing<br>(m)<br>GDA94 | Upstream<br>Invert<br>(m AHD) | Downstream<br>Invert<br>(m AHD) | Condition | Category  | Tenure  |
|----------------------|-----------------------|-----------|--------------------------|-----------------|--------------|---------------|-------------------------|--------------------------|-------------------------------|---------------------------------|-----------|-----------|---------|
| MANN_002             | 5/03/2020<br>11:07    | Floodgate | 1                        |                 | 1            | 2             | 460845                  | 6479613                  |                               | 0.58                            | Poor      | Secondary | Private |
| MANN_006             | 5/03/2020<br>12:17    | Floodgate | 2                        |                 | 1.05         | 1.6           | 462123                  | 6478367                  |                               | -0.43                           | Fair      | Secondary | Private |
| MANN_007             | 5/03/2020<br>11:50    | Floodgate | 2                        |                 | 1.4          | 1.6           | 461381                  | 6478430                  |                               | -0.53                           | Good      | Primary   | Private |
| MANN_009             | 5/03/2020<br>11:23    | Floodgate | 1                        |                 | 1.4          | 1.45          | 460637                  | 6479193                  |                               | -0.26                           | Fair      | Secondary | Private |
| MANN_018             | 12/09/2019            | Floodgate | 1                        |                 |              |               | 460412                  | 6475067                  |                               | 0.30                            | Fair      | Secondary | Private |
| MANN_020_<br>Centre  | 12/09/2019            | Floodgate | 1                        | 0.9             |              |               | 460819                  | 6475593                  | 0.28                          |                                 | Good      | Secondary | Private |
| MANN_020_<br>Outside | 12/09/2019            | Floodgate | 2                        | 0.6             |              |               | 460819                  | 6475593                  | 0.47                          |                                 | Good      | Secondary | Private |
| MANN_021_<br>Centre  | 12/09/2019            | Floodgate | 1                        | 0.9             |              |               | 461314                  | 6475692                  | 0.14                          |                                 | Good      | Primary   | Private |
| MANN_021_<br>Outside | 12/09/2019            | Floodgate | 2                        | 0.6             |              |               | 461314                  | 6475692                  | 0.30                          |                                 | Good      | Primary   | Private |
| MANN_022_<br>centre  | 12/09/2019            | Floodgate | 1                        | 1               |              |               | 461839                  | 6475807                  | -0.08                         |                                 | Good      | Secondary | Private |
| MANN_022_<br>Outside | 12/09/2019            | Floodgate | 2                        | 0.6             |              |               | 461839                  | 6475806                  | 0.35                          |                                 | Good      | Secondary | Private |
| MANN_023_<br>Centre  | 12/09/2019            | Floodgate | 1                        | 1.5             |              |               | 462222                  | 6476204                  | -0.17                         |                                 | Good      | Primary   | Private |
| MANN_023_<br>Outside | 12/09/2019            | Floodgate | 2                        | 0.6             |              |               | 462222                  | 6476204                  | 0.42                          |                                 | Good      | Primary   | Private |
| MANN_024_<br>Centre  | 12/09/2019            | Floodgate | 1                        | 1.8             |              |               | 461941                  | 6477049                  | -0.47                         |                                 | Good      | Secondary | Private |
| MANN_024_<br>Outside | 12/09/2019            | Floodgate | 2                        | 0.6             |              |               | 461942                  | 6477048                  | 0.10                          |                                 | Good      | Secondary | Private |
| MANN 026             | 12/09/2019            | Floodgate | 2                        | 1.5             |              |               | 461915                  | 6477541                  | -0.60                         |                                 | Good      | Primary   | Private |
| MANN_027             | 5/03/2020<br>12:00    | Floodgate | 4                        | 0.6             |              |               | 461812                  | 6478040                  |                               | 0.08                            | Good      | Primary   | Private |
| MANN_028             | 5/03/2020<br>11:40    | Floodgate | 2                        |                 | 1.55         | 1.6           | 461109                  | 6478250                  |                               | -0.43                           | Fair      | Primary   | Private |
| MANN_029             | 12/09/2019            | Floodgate | 2                        |                 | 1.76         | 1.5           | 460759                  | 6478222                  | 0.07                          |                                 | Good      | Secondary | Private |
| MANN_030_<br>Left    | 12/09/2019            | Floodgate | 2                        | 0.6             |              |               | 460603                  | 6478440                  | 0.34                          |                                 | Good      | Secondary | Private |
| MANN_030_<br>Right   | 12/09/2019            | Floodgate | 1                        | 0.9             |              |               | 460604                  | 6478439                  | -0.36                         |                                 | Good      | Secondary | Private |
| MANN_035             | 5/03/2020<br>14:47    | Floodgate | 1                        |                 | 1.8          | 1.05          | 463151                  | 6475640                  |                               | 0.04                            | Fair      | Primary   | Private |
| MANN_036             | 5/03/2020<br>14:35    | Floodgate | 1                        |                 | 1.4          | 1.1           | 463136                  | 6476231                  |                               | -0.36                           | Fair      | Secondary | Private |
| MANN_045             | 5/03/2020<br>15:14    | Floodgate | 1                        |                 | 1            | 1.3           | 465135                  | 6474917                  |                               | -0.21                           | Poor      | Secondary | Private |
| MANN_048             | 5/03/2020<br>16:05    | Floodgate | 1                        |                 | 0.9          | 0.9           | 465743                  | 6475812                  |                               | 0.01                            | Poor      | Secondary | Private |
| MANN_049             | 5/03/2020<br>15:56    | Floodgate | 1                        |                 | 3.3          | 1.65          | 465629                  | 6475781                  |                               | -0.49                           | Good      | Primary   | Private |

Table F-3: Summary of structures where data was collected during this current project

#### Comment

Floodgates cannot open due to sediment build up in front of the gates. Height taken from Tony Townsend survey.

Invert measured from water level (approximately 0.15 m below water level). One of three floodgates. Large gate located in the

centre of the three.

Two of three floodgates. Two smaller floodgates on the outside.

One of three floodgates. Large gate located in the centre of the three. Mangroves growing in front of floodgate. Does not easily open.

Two of three floodgates. Two smaller floodgates on the outside. Upstream is dry with no flow.

One of three floodgates. Large gate located in the centre of the three. Gate leaking.

Two of three floodgates. Two smaller floodgates on the outside.

One of three floodgates. Large gate located in the centre of the three. Gate leaking.

Two of three floodgates. Two smaller floodgates on the outside.

One of three floodgates. Large gate located in the centre of the three.

Two of three floodgates. Two smaller floodgates on the outside.

Right hand gate partially winched open.

Two left gates, in good condition. Higher invert level.

One gate on right side, slightly wedged open. Lower invert level.

Very poor condition. Flap open permanently.

| Structure ID* | Date/time<br>surveyed | Туре      | Number<br>of<br>Culverts | Diameter<br>(m) | Width<br>(m) | Height<br>(m) | Easting<br>(m)<br>GDA94 | Northing<br>(m)<br>GDA94 | Upstream<br>Invert<br>(m AHD) | Downstream<br>Invert<br>(m AHD) | Condition | Category  | Tenure           | Comment                                                                                                                                                                      |
|---------------|-----------------------|-----------|--------------------------|-----------------|--------------|---------------|-------------------------|--------------------------|-------------------------------|---------------------------------|-----------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MANN_053      | 5/03/2020<br>14:26    | Floodgate | 1                        |                 | 2.6          | 1.1           | 463457                  | 6476556                  |                               | -0.47                           | Fair      | Secondary | Private          |                                                                                                                                                                              |
| MANN_056      | 5/03/2020<br>10:52    | Floodgate | 2                        |                 | 1.45         | 1.45          | 460584                  | 6480241                  |                               | -0.34                           | Poor      | Secondary | Private          | Concrete cancer. Gates do not completely block<br>culvert.                                                                                                                   |
| MANN_059      | 5/03/2020<br>10:13    | Floodgate | 1                        |                 | 2.4          | 1.5           | 459342                  | 6481870                  |                               | -0.12                           | Good      | Secondary | Private          |                                                                                                                                                                              |
| MANN_060      | 12/09/2019            | Floodgate | 2                        | 1.2             |              |               | 458631                  | 6481406                  | -0.04                         |                                 | Poor      | Secondary | Private          | Old floodgates - in poor condition. Owner says they intentionally let the gates leak.                                                                                        |
| MANN_062      | 6/03/2020<br>9:40     | Floodgate | 1                        |                 | 1.8          | 1.2           | 458555                  | 6473710                  |                               | -0.34                           | Fair      | Secondary | Private          |                                                                                                                                                                              |
| MANN_065      | 6/03/2020<br>10:25    | Floodgate | 1                        |                 | 1.2          | 1.55          | 458131                  | 6470568                  |                               | 0.03                            | Good      | Secondary | Private          |                                                                                                                                                                              |
| MANN_066      | 6/03/2020<br>16:09    | Floodgate | 2                        |                 | 1            | 1             | 454564                  | 6469861                  |                               | -0.60                           | Poor      | Secondary | Private          | Floodgates blocked by log preventing them from<br>opening properly.                                                                                                          |
| MANN_068      | 6/03/2020<br>15:32    | Floodgate | 1                        |                 | 1.3          | 1.25          | 460568                  | 6473361                  |                               | 0.01                            | Fair      | Secondary | Private          |                                                                                                                                                                              |
| MANN_069      | 6/03/2020<br>15:14    | Floodgate | 1                        |                 | 2.5          | 1.4           | 460781                  | 6473296                  |                               | 0.05                            | Good      | Secondary | Private          |                                                                                                                                                                              |
| MANN_070      | 6/03/2020<br>14:54    | Floodgate | 1                        | 1               |              |               | 460980                  | 6473299                  |                               | -0.12                           | Good      | Secondary | Private          | Good condition. Photo not taken.                                                                                                                                             |
| MANN_071      | 6/03/2020<br>14:45    | Floodgate | 1                        | 0.9             |              |               | 461168                  | 6473167                  |                               | -0.25                           | Fair      | Secondary | Private          | Square flap on circular culvert.                                                                                                                                             |
| MANN_073      | 6/03/2020<br>14:11    | Floodgate | 1                        | 0.375           |              |               | 461446                  | 6469301                  | 0.31                          |                                 | Good      | Secondary | Private          | Good condition.                                                                                                                                                              |
| MANN_082      | 6/03/2020             | Floodgate | 4                        | 1.2             |              |               | 464345                  | 6471567                  | -0.13                         |                                 | Poor      | Primary   | MidCoast Council | Very old flaps.                                                                                                                                                              |
| MANN_085      | 6/03/2020<br>14:00    | Floodgate | 1                        | 0.9             |              |               | 461181                  | 6469213                  | 0.06                          |                                 | Good      | Secondary | Private          |                                                                                                                                                                              |
| MANN_088      | 6/03/2020<br>0:00     | Culvert   | 1                        | 0.75            |              |               | 456007                  | 6468353                  |                               |                                 | Other     | Secondary | Private          | Structure with floodgate removed. Foliage too dense<br>to obtain GPS position. No water level available for<br>alternate GPS position. No longer end of system<br>structure. |
| MANN_095      | 12/09/2019            | Floodgate | 2                        | 0.9             |              |               | 459054                  | 6481203                  | 0.35                          |                                 | Poor      | Secondary | Private          | Left gate almost fallen off. Both gates are in a poor condition.                                                                                                             |
| MANN_096      | 12/09/2019            | Floodgate | 3                        | 0.8             |              |               | 458935                  | 6481290                  | 0.57                          |                                 | Poor      | Primary   | Private          | Old floodgates - in poor condition. Farmer says he<br>purposely lets leak.                                                                                                   |
| MANN_097      | 5/03/2020<br>13:01    | Floodgate | 1                        | 0.7             |              |               | 462151                  | 6476800                  |                               | -0.18                           | Fair      | Secondary | Private          |                                                                                                                                                                              |
| MANN_10       | 5/03/2020<br>12:35    | Floodgate | 1                        |                 | 1.2          | 2.1           | 462637                  | 6478215                  |                               | -0.23                           | Fair      | Secondary | Private          |                                                                                                                                                                              |
| MANN_108      | 6/03/2020<br>9:10     | Floodgate | 1                        | 1.2             |              |               | 460511                  | 6475044                  |                               | 0.14                            | Good      | Secondary | Private          |                                                                                                                                                                              |
| MANN_112      | 6/03/2020<br>0:00     | N/A       |                          |                 |              |               | 454630                  | 6469047                  |                               |                                 | Other     |           | Private          | No floodgate observed. Found some pipe and rubble. Floodgate appears to have been covered with rock bank protection or removed.                                              |
| MANN_114      | 6/03/2020<br>11:58    | Floodgate | 1                        | 1.2             |              |               | 451495                  | 6469504                  |                               | 0.33                            | Good      | Secondary | Private          | Gate covered in dense vegetation (lantana).                                                                                                                                  |
| MANN_19       | 12/09/2019            | Floodgate | 1                        | 1.85            |              |               | 460393                  | 6475242                  | -0.28                         |                                 | Good      | Secondary | Private          |                                                                                                                                                                              |
| MANN_25       | 5/03/2020<br>13:59    | Floodgate | 1                        | 0.55            |              |               | 463092                  | 6477820                  |                               | -0.43                           | Fair      | Secondary | Private          |                                                                                                                                                                              |
| MANN_54       | 5/03/2020<br>14:17    | Floodgate | 2                        | 0.9             |              |               | 463266                  | 6477154                  |                               | -0.21                           | Good      | Secondary | Private          |                                                                                                                                                                              |
| MANN_55       | 5/03/2020<br>14:08    | Culvert   | 1                        |                 | 1.8          | 1.2           | 462947                  | 6477318                  |                               | -0.29                           | Other     | Primary   | Private          | Culvert completely blocked on upstream side.<br>Culvert in very bad condition/partly demolished.<br>Flap on downstream side has been removed.                                |
|               |                       |           |                          |                 |              |               | Manning R               | iver Floodplain P        | rioritisation Study<br>F-12   | , WRL TR 2020/09, M             | ay 2023   |           |                  |                                                                                                                                                                              |

| Structure ID* | Date/time<br>surveyed | Туре      | Number<br>of<br>Culverts | Diameter<br>(m) | Width<br>(m) | Height<br>(m) | Easting<br>(m)<br>GDA94 | Northing<br>(m)<br>GDA94 | Upstream<br>Invert<br>(m AHD) | Downstream<br>Invert<br>(m AHD) | Condition | Category  | Tenure  |
|---------------|-----------------------|-----------|--------------------------|-----------------|--------------|---------------|-------------------------|--------------------------|-------------------------------|---------------------------------|-----------|-----------|---------|
| MANN_72       | 6/03/2020<br>13:44    | Floodgate | 1                        | 0.3             |              |               | 462076                  | 6467466                  |                               | -0.36                           | Good      | Secondary | Private |
| MANN_98       | 5/03/2020<br>13:41    | Floodgate | 1                        | 1.2             |              |               | 462660                  | 6477890                  |                               | -0.05                           | Fair      | Secondary | Private |
| WRL_MAN_01    | 6/03/2020             | Floodgate | 3                        | 0.6             |              |               | 467406                  | 6470929                  | 0.13                          |                                 | Good      | Secondary | Private |
| WRL_MAN_02    | 5/03/2020<br>15:36    | Floodgate | 1                        |                 | 2.5          | 2             | 465591                  | 6475609                  |                               | -0.04                           | Good      | Secondary | Private |
| WRL_MAN_03    | 6/03/2020<br>10:13    | Floodgate | 1                        |                 | 1.8          | 1.2           | 457955                  | 6471141                  |                               | -0.32                           | Fair      | Primary   | Private |
| WRL_MAN_04    | 6/03/2020<br>12:38    | Culvert   | 1                        |                 | 0.95         | 0.6           | 455576                  | 6467532                  |                               | 0.52                            | Poor      | Secondary | Private |
| WRL_MAN_05    | 12/09/2019            | Culvert   | 2                        |                 | 2.4          | 1.62          | 460497                  | 6478649                  |                               | -1.05                           | Good      | Secondary | Private |

\* Structure ID's have been provided by MidCoast Council. If a structure was identified that did not have a MidCoast Council ID it has been given a WRL ID (WRL\_MAN\_##).

#### Comment

Gate has been jammed shut with piece of wood wedged against it. Disused structure that has been filled in immediately upstream on the Lansdowne River.

No evidence of floodgates ever existing.

| Structure<br>ID | Туре      | #<br>Culverts | Diameter<br>(m) | Width<br>(m) | Height<br>(m) | Easting<br>(m) | Northing<br>(m) | Invert<br>(m AHD) | Category     | Tenure  | Condition | Comment                           | Dimension data<br>source | Invert data source                      |
|-----------------|-----------|---------------|-----------------|--------------|---------------|----------------|-----------------|-------------------|--------------|---------|-----------|-----------------------------------|--------------------------|-----------------------------------------|
| MANN 031        | Floodgate | 1             |                 |              |               | 460447         | 6478648         | -0.528            | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK01           | Culvert   | 1             | 0.9             |              |               | 469613         | 6482109         | -0.13             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK02           | Culvert   | 1             | 0.7             |              |               | 469396         | 6481211         | 0.02              | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 120        | Floodgate | 1             | -               | 1.5          | 0.9           | 470073         | 6484246         | 0.18              | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 130        | Floodgate | 1             | 0.9             |              |               | 469291         | 6481033         | -0.26             | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 129        | Floodgate | 1             | 0.9             |              |               | 469493         | 6481715         | -0.19             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 128        | Floodgate | 1             | 1.2             |              |               | 469602         | 6482215         | -0.79             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 127        | Floodgate | 1             |                 | 0.5          | 0.9           | 469670         | 6482522         | -0.05             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 121        | Floodgate | 1             |                 | 1            | 0.9           | 469890         | 6483475         | 0.034             | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 123        | Floodgate | 1             |                 | 1.5          | 1.85          | 469917         | 6483445         | -0.738            | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 126        | Culvert   | 1             |                 | 0.6          | 0.9           | 469914         | 6483426         | 0.07              | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 125        | Culvert   | 1             |                 | 0.5          | 0.9           | 469878         | 6483431         | 0.08              | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 124        | Culvert   | 1             |                 | 1            | 0.6           | 469881         | 6483443         | 0.08              | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK05           | Culvert   | 1             | 0.9             | _            |               | 469458         | 6481447         | 0.02              | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK06           | Culvert   | 1             | 0.9             |              |               | 469516         | 6481712         | -0.1              | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK07           | Culvert   | 1             | 0.9             |              |               | 469572         | 6481917         | -0.01             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK08           | Culvert   | 1             | 0.9             |              |               | 469701         | 6482521         | -0.08             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK09           | Culvert   | 1             | 1.5             |              |               | 469818         | 6483024         | 0.07              | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK12           | Culvert   | -             | 0.9             |              |               | 469917         | 6483438         | 0.29              | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK13           | Floodgate | -             | 1.5             |              |               | 469932         | 6483498         | -0.39             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK14           | Floodgate | 1             | 110             |              | 1.5           | 469291         | 6481033         | -0.47             | Primary      | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK15           | Culvert   | - 1           | 0.9             |              | 115           | 469322         | 6481021         | -0.26             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| UNK16           | Culvert   | -             | 1.5             |              |               | 469324         | 6481025         | -0.47             | Secondary    | Private |           |                                   | Glamore et al. (2014)    | Glamore et al. (2014)                   |
| MANN 137        | Culvert   | -             | 0.35            |              |               | 454960         | 6468176         | -0.034            | Secondary    | Private |           |                                   | Ruprecht et al. (2020b)  | Ruprecht et al. (2020b)                 |
| UNK03           | Floodgate | 2             | 1.2             |              |               | 454872         | 6467717         | 0.135             | Secondary    | Private |           |                                   | Ruprecht et al. (2020b)  | Ruprecht et al. (2020b)                 |
| 0               | lioouguco | _             |                 |              |               |                | 0.07727         | 0.200             |              |         |           | Very old wooden floodgates not    |                          |                                         |
| MANN 003        | Floodgate | 1             |                 | 1.8          | 1.3           | 460633         | 6480664         | -0.284            | Primary      | Private | Poor      | working properly                  | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 004        | Culvert   | 1             | 0.6             |              |               | 460627         | 6480671         | 1.083             | Primary      | Private | Fair      | No floodgate just pipe            | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 012        | Floodgate | 1             |                 | 1.1          | 1.1           | 462760         | 6474243         | 0.043             | Secondary    | Private | Good      |                                   | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
|                 | liocuguto | -             |                 |              |               |                | 0171210         | 01010             | eccondury    |         | 0000      | No floodgate or pipe, ground      |                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| MANN 013        |           | 1             |                 |              |               | 462325         | 6473882         | 2.228             | Secondary    | Private |           | level given                       | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 014        | Floodgate | 1 of 2        |                 | 1.8          | 1.2           | 457918         | 6474050         | -0.677            | Secondary    | Private | Good      | 1 of 2 floodgates                 | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
|                 | Jere      |               |                 |              |               |                |                 |                   | ,            |         |           | Floodgate broken fallen off. 1 of |                          | ,                                       |
| MANN 014        | Culvert   | 1 of 2        |                 | 1.8          | 1.2           | 457916         | 6474051         | -0.72             | Secondary    | Private | Poor      | 2 floodgates                      | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 015        | Floodgate | 1             |                 | 1.5          | 1.2           | 457413         | 6473944         | -0.527            | Secondary    | Private | Good      |                                   | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 016        | Floodgate | -             |                 | 3            | 1.8           | 456962         | 6474047         | 0.133             | Secondary    | Private | Good      |                                   | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 017        | Floodgate | -             |                 | 3            | 1.8           | 456535         | 6474193         | 0.093             | Primary      | Private | Good      |                                   | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
|                 | liocuguto | -             |                 | Ū            | 1.0           |                | 0171200         | 0.000             |              |         | 0000      | Pipe blocked with mud no          |                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| MANN 033        | Culvert   | 1             | 0.9             |              |               | 460546         | 6479331         | -0.128            | Secondary    | Private | Fair      | floodgate                         | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
|                 |           |               |                 |              |               |                |                 |                   |              |         |           | Pipe blocked with mud no          |                          |                                         |
| MANN 034        | Floodgate | 1             | 0.9             |              |               | 463284         | 6475494         | -0.26             | Secondary    | Private | Poor      | floodgate                         | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 037        | Floodgate | 1             | 1.2             |              |               | 463139         | 6476835         | -0.001            | Secondary    | Private | Good      |                                   | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 038        | Floodgate | _<br>1 of 2   |                 | 1.5          | 0.8           | 460678         | 6472987         | -0.099            | Secondary    | Private | Good      | 1 of 2 floodgates                 | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
|                 | Jere      |               |                 |              |               |                |                 |                   | ,            |         |           | Custom headwall, 1 of 2           |                          | ,                                       |
| MANN 038        | Floodgate | 1 of 2        |                 | 1.5          | 0.8           | 460680         | 6472986         | -0.071            | Secondary    | Private | Good      | floodgates                        | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 039        | Floodgate | 1             |                 | 1            | 1.2           | 460347         | 6473062         | -0.237            | Secondary    | Private | Good      |                                   | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 042        | Floodgate | 1 of 2        | 0.9             | -            |               | 457051         | 6466614         | 0.534             | Secondary    | Private | Good      | 1 of 2 floodgates                 | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 042        | Floodgate | 1 of 2        | 0.6             |              |               | 457127         | 6466560         | 0.576             | Secondary    | Private | Good      | 1 of 2 floodgates                 | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| • • •           |           |               |                 |              |               |                |                 |                   |              |         |           | Large custom floodgate 4m         |                          |                                         |
| MANN 046        | Floodgate | 1             |                 | 4            | 1.5           | 465207         | 6475168         | 0.045             | Secondary    | Private | Good      | wide                              | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 050        | Floodaate | 1             | 0.75            |              |               | 466636         | 6477645         | -0,277            | Secondary    | Private | Fair      | Pipe on lean may be broken        | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
| MANN 051        | Floodaate | -             | 0.6             |              |               | 466580         | 6477704         | -0.477            | Secondary    | Private | Fair      | Wooden flap part broken           | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |
|                 | eeagate   | -             | 010             |              |               |                |                 | ,                 | e coornaar y |         |           | No floodgate just open drain.     |                          |                                         |
| MANN            | 058       | 1             |                 |              |               | 459812         | 6481633         | -0.381            | Secondary    | Private |           | invert of drain given             | Abbott & Macro (2021)    | Abbott & Macro (2021)                   |

| Structure<br>ID | Туре      | #<br>Culverts | Diameter<br>(m) | Width<br>(m) | Height<br>(m) | Easting<br>(m) | Northing<br>(m) | Invert<br>(m AHD) | Category  | Tenure  | Condition | Comment                                                                         | Dimension data<br>source   | Invert data source    |
|-----------------|-----------|---------------|-----------------|--------------|---------------|----------------|-----------------|-------------------|-----------|---------|-----------|---------------------------------------------------------------------------------|----------------------------|-----------------------|
| MANN 061        | Floodgate | 1 of 2        | 0.9             |              |               | 461941         | 6475757         | -0.763            | Secondary | Private | Good      | Structure has 2 pipes, this one has a floodgate                                 | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 061        | Culvert   | 1 of 2        | 0.9             |              |               | 461943         | 6475757         | -0.763            | Secondary | Private | Good      | Structure has 2 pipes, this one does not have a floodgate                       | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 063        | Floodgate | 1             | 1.2             |              |               | 457167         | 6473861         | -0.109            | Secondary | Private | Good      |                                                                                 | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 064        | Floodgate | 1             | 0.45            |              |               | 458002         | 6471528         | 0.015             | Secondary | Private | Good      | Clear trees on banks                                                            | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 067        | Floodgate | 1             |                 | 1            | 1.2           | 459998         | 6473485         | 0.263             | Secondary | Private | Good      |                                                                                 | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 075        | Floodgate | 1             | 0.45            |              |               | 461145         | 6471291         | 0.479             | Secondary | Private | Good      | Small rubber wooden custom<br>floodgate                                         | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 076        | Floodgate | 1 of 2        | 1.2             |              |               | 462471         | 6473164         | 0.499             | Secondary | Private | Good      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 076        | Floodgate | 1 of 2        | 1.2             |              |               | 462471         | 6473164         | 0.501             | Secondary | Private | Good      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 079        | Floodgate | 1             | 0.6             |              |               | 464149         | 6473771         | -0.049            | Primary   | Private | Poor      | Floodgate fallen off laying<br>nearby                                           | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 080        | Floodgate | 1             | 0.45            |              |               | 463617         | 6474282         | 0.035             | Secondary | Private | Poor      | Pipe blocked with mud no floodgate                                              | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 081        | Floodgate | 1             | 0.6             |              |               | 464259         | 6474078         | 0.38              | Secondary | Private | Poor      | Floodgate fallen off bad erosion<br>around pipe                                 | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 083        | Floodgate | 1             | 0.9             |              |               | 463667         | 6467954         | 0.069             | Secondary | Private | Good      | Thick trees upstream                                                            | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 086        | Floodgate | 1 of 2        | 0.9             |              |               | 456480         | 6467356         | -0 452            | Secondary | Private | Good      | One floodgate with chain for                                                    | Abbott & Macro (2021)      | Abbott & Macro (2021) |
|                 |           |               | 0.0             |              |               |                |                 |                   |           |         |           | pulling open, 1 of 2 floodgates                                                 |                            |                       |
| MANN 086        | Floodgate | 1 of 2        | 0.9             |              |               | 456480         | 6467357         | -0.431            | Secondary | Private | Good      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MAININ U87      | Floodgate | T             | 1.5             |              |               | 455649         | 6468300         | 0.441             | Secondary | Private | Good      | Shoots of tip used to close pipe                                                | ADDOTT & Macro (2021)      | ADDOTT & Macro (2021) |
| MANN 088        | Culvert   | 1             | 0.75            | 2.2          |               | 456009         | 6468355         | 0.368             | Secondary | Private | Good      | in high water                                                                   | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 089        | Floodgate | 1             |                 | 2.2          | 1             | 455886         | 64/421/         | 0.162             | Primary   | Private | Good      |                                                                                 | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 090        | Floodgate | 1 of 2        |                 | 1.5          | 1.5           | 456407         | 6474096         | -0.494            | Primary   | Private | Good      | reduce flow in dry periods, 1 of<br>2 floodgates                                | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 090        | Floodgate | 1 of 2        |                 | 1.5          | 1.5           | 456409         | 6474096         | -0.494            | Primary   | Private | Good      | Removable flaps upstream to<br>reduce flow in dry periods, 1 of<br>2 floodgates | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 091        | Culvert   | 1             | 2.1             |              |               | 455808         | 6473288         | -0.604            | Secondary | Private | Fair      | Pipe completely blocked with plywood                                            | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 092        | Floodgate | 1 of 2        | 0.6             |              |               | 456296         | 6473659         | -0.374            | Secondary | Private | Fair      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 092        | Floodgate | 1 o f2        | 0.6             |              |               | 456296         | 6473658         | -0.374            | Secondary | Private | Fair      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 093        | Culvert   | 1 of 2        | 0.6             |              |               | 456349         | 6473873         | -0.043            | Secondary | Private | Fair      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 093        | Culvert   | 1 of 2        | 0.6             |              |               | 456349         | 6473872         | -0.037            | Secondary | Private | Fair      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 094        | Floodgate | 1             | 1.8             |              |               | 460331         | 6474384         | 0.03              | Secondary | Private | Good      |                                                                                 | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 102        | Floodgate | 1 of 4        | 0.9             |              |               | 462888         | 64/4658         | -0.458            | Secondary | Private | Good      | 1 of 4 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 102        | Floodgate | 1 of 4        | 0.9             |              |               | 462888         | 64/465/         | -0.458            | Secondary | Private | Good      | 1 of 4 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 102        | Floodgate | 1 of 4        | 0.9             |              |               | 402007         | 6474655         | -0.458            | Secondary | Privato | Good      | 1 of 4 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 102        | Floodgate | 1             | 0.5             | 1            | 1             | 462338         | 6476229         | -0.266            | Secondary | Private | Good      | 1 of 4 hoodgates                                                                | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN            | 1 104     | 1             |                 | 2.1          | 1.8           | 462058         | 6473584         | -0.415            | Secondary | Private | Good      | Auto tidal gate working                                                         | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 105        | Floodgate | 1             | 1.2             |              |               | 461917         | 6473516         | -0.202            | Secondary | Private | Good      |                                                                                 | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 111        | Floodgate | 1             |                 | 0.6          | 0.6           | 454868         | 6469534         | 0.726             | Secondary | Private | Poor      | No floodgate small headwall tide goes around                                    | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 113        | Floodgate | 1 of 3        | 0.9             |              |               | 454307         | 6469045         | -0.037            | Secondary | Private | Good      | 1 of 3 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 113        | Floodgate | 1 of 3        | 0.9             |              |               | 454305         | 6469044         | -0.058            | Secondary | Private | Good      | 1 of 3 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 113        | Floodgate | 1 of 3        | 0.9             |              |               | 454303         | 6469043         | 0.173             | Secondary | Private | Good      | One pipe a little higher than others, 1 of 3 floodgates                         | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 118        | Floodgate | 1 of 2        |                 | 1.2          | 2.1           | 455805         | 6469668         | -0.186            | Secondary | Private | Good      | Auto tidal gate working, 1 of 2 floodgates                                      | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 118        | Floodgate | 1 of 2        |                 | 1.2          | 2.1           | 455803         | 6469668         | -0.187            | Secondary | Private | Good      | 1 of 2 floodgates                                                               | Abbott & Macro (2021)      | Abbott & Macro (2021) |
| MANN 052        | Floodgate | 1             | 0.4             |              |               | 464815         | 6474712         | 0.037             | Secondary | Private |           |                                                                                 | MidCoast Council<br>(2014) | Glamore et al. (2014) |

| Structure<br>ID      | Туре                   | #<br>Culverts | Diameter<br>(m) | Width<br>(m) | Height<br>(m) | Easting<br>(m)   | Northing<br>(m)    | Invert<br>(m AHD) | Category               | Tenure                               | Condition | Comment | Dimension data<br>source                       | Invert data source                             |
|----------------------|------------------------|---------------|-----------------|--------------|---------------|------------------|--------------------|-------------------|------------------------|--------------------------------------|-----------|---------|------------------------------------------------|------------------------------------------------|
| MANN 047             | Floodgate              | 1             |                 | 0.5          |               | 465507           | 6475468            | 0.51              | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     | Glamore et al. (2014)                          |
| MANN 119             | Floodgate              | 2             | 0.5             |              |               | 466605           | 6480346            |                   | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 101             | Floodgate              | 2             | 0.5             |              |               | 463387           | 6475669            |                   | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 099             | Floodgate              | 1             |                 | 0.3          |               | 464194           | 6476706            |                   | Secondary              | Private                              |           |         | MidCoast Council                               |                                                |
| MANN 100             | Floodgate              | 1             |                 | 0.3          |               | 464399           | 6476789            |                   | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 005             | Floodgate              | 3             |                 | 1.5          |               | 462569           | 6478392            | -0.557            | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     | Glamore et al. (2014)                          |
| MANN 008             | Floodgate              | 1             |                 | 0.5          |               | 461074           | 6478403            | -0.1              | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     | Glamore et al. (2014)                          |
| MANN 107             | Floodgate              | 1             | 1.8             |              |               | 461141           | 6475475            |                   | Primary                | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 106             | Floodgate              | 2             |                 | 0.5          |               | 459954           | 6474181            |                   | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 115             | Floodgate              | 1             | 1               |              |               | 458196           | 6472461            |                   | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 117             | Floodgate              | 2             |                 | 1            |               | 457484           | 6470379            |                   | Primary                | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 139             | Floodgate              | 1             | 1.5             |              |               | 448259           | 6468423            |                   | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 110             | Floodgate              | 1             |                 | 0.5          |               | 456916           | 6469254            |                   | Secondary              | Private                              |           |         | MidCoast Council<br>(2014)                     |                                                |
| MANN 044             | Floodgate              | 1             |                 | 0.5          |               | 461687           | 6466038            | 0.062             | Primary                | Oxley<br>Island<br>Drainage<br>Union |           |         | MidCoast Council<br>(2014)                     | Glamore et al. (2014)                          |
| MANN 043             | Floodgate              | 5             | 1.5             |              |               | 461990           | 6466739            | -0.432            | Primary                | Oxley<br>Island<br>Drainage<br>Union |           |         | MidCoast Council<br>(2014)                     | Glamore et al. (2014)                          |
| MANN 074             | Culvert                | 1             |                 | 1            |               | 463971           | 6467879            | 0.199             | Primary                | Private                              |           |         | MidCoast Council<br>(2014)                     | Glamore et al. (2014)                          |
| MANN 084             | Floodgate              | 1             | 0.5             |              |               | 461367           | 6470141            | -0.196            | Secondary              | Private                              |           |         | MidCoast Council (2014)                        | Glamore et al. (2014)                          |
| MANN 001<br>MANN 040 | Floodgate<br>Floodgate | 2<br>4        |                 | 1.3<br>1.8   | 0.9<br>1.5    | 460849<br>460942 | 6479911<br>6471334 | 0.186<br>0.561    | Secondary<br>Secondary | Private<br>Private                   |           |         | Glamore et al. (2014)<br>Glamore et al. (2014) | Glamore et al. (2014)<br>Glamore et al. (2014) |

#### Table F-5 Summary of unsurveyed structures

| Structure ID | Easting     | Northing    | Sub-catchment   | Comment                        |
|--------------|-------------|-------------|-----------------|--------------------------------|
| MANN 119     | 466605.128  | 6480345.96  | Big Swamp       | Inspected not surveyed         |
| MANN 101     | 463386.7638 | 6475668.78  | Mambo Island    | Inspected not surveyed         |
| MANN 099     | 464193.8349 | 6476705.561 | Cattai Creek    | Inspected not surveyed         |
| MANN 100     | 464398.958  | 6476788.852 | Cattai Creek    | Inspected not surveyed         |
| MANN 107     | 461140.9621 | 6475474.645 | Jones Island    | Inspected not surveyed         |
| MANN 106     | 459954.0731 | 6474181.313 | Jones Island    | Inspected not surveyed         |
| MANN 115     | 458196.342  | 6472460.663 | Ghinni Ghinni   | Inspected not surveyed         |
| MANN 117     | 457484.3806 | 6470379.413 | Ghinni Ghinni   | Inspected not surveyed         |
| MANN 139     | 448258.7891 | 6468422.913 | Taree Estate    | Inspected not surveyed         |
| MANN 110     | 456915.8009 | 6469253.853 | Dumaresq Island | Inspected not surveyed         |
| MANN 112     | 454630.3367 | 6469046.686 | Dumaresq Island | Inspected, structure destroyed |

### Appendix G Water Quality

#### G1 Preamble

Historically, the Manning River estuary and backswamp drainage areas have been extensively monitored. Water quality monitoring has typically focused on spot checks of dry weather pH and salinity, or a range of other water quality indicators as part of the NSW Food Authority Shellfish Quality Assurance Program following freshwater inflows from the catchment. Extensive monitoring of the Cattai Creek-Pipeclay Canal area was undertaken as part of the Big Swamp Hydrologic Study (Glamore et al., 2014). This study included dry weather drain pH and wet weather sampling events of acid flux (concentration x discharge) from the Big Swamp floodplain. Overall, low pH water (pH < 4.0) was measured across the site in drains before the rain event and in Cattai Creek-Pipeclay Canal post-flood. Following Big Swamp Hydrologic Study and subsequent on-ground remediation works, MidCoast Council commissioned a continuous monitoring program of the Cattai Creek-Pipeclay Canal drainage area, the first of its kind in the Manning River estuary targeting acid drainage, which has now been going for approximately six (6) years Ruprecht et al. (2020a).

Other key water quality studies of the Manning River estuary, include:

- Sonter (1999);
- Smith et al. (1999);
- Dove (2003); and
- Johnston (2007).

However, the majority of water quality information measured during these investigations cannot be used to assign typical pH values to individual drains or drainage areas, and as such, the data from these studies has not been reproduced in this report. Nonetheless, the information provided in these studies is useful in understanding the extent of the ASS drainage issue across the Manning River estuary.

This section provides an overview of prominent water quality objectives for the Manning River estuary, as well as a summary of the water quality monitoring program at Big Swamp since its inception in early 2014. It also provides a summary of statistics on salinity in the lower estuary based on data provided by the NSW Food Authority.

#### G2 Manning River Water Quality Objectives

Surface water quality objectives for the Manning River are based on recommendations from the ANZECC guidelines for marine and/or estuarine waters. Table G-1 outlines default trigger values for stressors applicable to south-east Australia for slightly disturbed ecosystems. Trigger values are used to assess the risk of adverse effects to sensitive receivers due to water quality parameters in various ecosystem types.

 Table G-1: ANZECC guidelines for estuaries and wetlands in NSW ANZECC and ARMCANZ

 (2000)

| Ecosystem type | DO (% sa    | ituration)  | рН          |             |  |
|----------------|-------------|-------------|-------------|-------------|--|
|                | Lower limit | Upper limit | Lower limit | Upper limit |  |
| Estuaries      | 80          | 110         | 7.0         | 8.5         |  |
| Wetlands       | No data     | No data     | No data     | No data     |  |

#### **G3** Big Swamp Water Quality Monitoring Program

WRL commenced a monitoring program at Big Swamp in April 2014 (Ruprecht et al., 2020a) following the recent Big Swamp hydrological study (Glamore et al., 2014) and subsequent on-ground remediation works to improve onsite ASS drainage issues. As part of the monitoring program, MidCoast Council initially purchased three (3) water quality monitoring units that measure pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and water levels. This equipment was installed in August 2014 and strategically placed in key areas of the remediation zones including the Eastern Swale Drain, Angelina Swamp and Angelina Mouth, as shown in Figure G-1. Additional water quality units were purchased in September 2014 and stationed at Cockatoo Island and Cattai Creek (Figure G-1) to improve and quantify understanding of the acid contribution from other areas of the site following the remediation works.

All monitoring stations record pH, electrical conductivity (EC), temperature, and pressure (i.e. water levels). Note that all water levels are reported relative to AHD. In addition, monitoring sites located at Angelina Mouth, Angelina Swamp, and the Eastern Swale Drain also record Dissolved Oxygen (DO), which is reported as a % saturation in the water column as per the ANZECC and ARMCANZ (2000).

A summary of three (3) years of the water quality data at the monitoring locations, including the median, and 10<sup>th</sup> percentile and 90<sup>th</sup> percentile values, is provided in Table G-2 (from Ruprecht et al. (2017)). Note that by definition, a percentile indicates the value below which a given percentage of observations in a time series of observations fall. For example, the 10<sup>th</sup> percentile is the value below which 10 percent of the observations may be found.



Figure G-1: Water quality monitoring sites at Big Swamp

| Table G-2: Summary of statistics for three (3) years of the monitoring program |
|--------------------------------------------------------------------------------|
| (Ruprecht et al., 2017)                                                        |

| Location            | Percentile      | EC (µS/cm) | рН  | Dissolved<br>Oxygen (%<br>saturation) |
|---------------------|-----------------|------------|-----|---------------------------------------|
|                     | 10th Percentile | 303        | 4.6 | Not Recorded                          |
| Cockatoo Island     | Median          | 3,510      | 6.0 | Not Recorded                          |
|                     | 90th Percentile | 36,334     | 7.9 | Not Recorded                          |
|                     | 10th Percentile | 521        | 3.7 | 1.7                                   |
| Eastern Swale Drain | Median          | 6,521      | 5.8 | 52.7                                  |
|                     | 90th Percentile | 38,470     | 7.1 | 78.4                                  |
|                     | 10th Percentile | 21,850     | 3.9 | -0.3                                  |
| Angelina Swamp      | Median          | 33,770     | 5.2 | 0.2                                   |
|                     | 90th Percentile | 49,149     | 6.3 | 0.9                                   |
|                     | 10th Percentile | 1,499      | 4.8 | 9.2                                   |
| Angelina Mouth      | Median          | 23,731     | 6.6 | 54.1                                  |
|                     | 90th Percentile | 40,137     | 7.3 | 80.5                                  |
|                     | 10th Percentile | 2,212      | 6.0 | Not Recorded                          |
| Cattai Creek        | Median          | 33,467     | 7.3 | Not Recorded                          |
|                     | 90th Percentile | 45,498     | 9.2 | Not Recorded                          |

#### **G4** Manning River Shellfish Quality Assurance Program

The Sydney rock oyster (Saccostrea glomerata) is produced in areas of the Manning River estuary that are at times impacted by acid discharges from ASS-affected floodplain drainage areas. Acidification of waterways severely degrades estuarine ecosystems – it can cause fish and oyster kills, fish disease, and impact oysters.

Oyster farmers on the Manning River hold a food safety licence which is regulated by the Food Standards Code in accordance with Australian Shellfish Quality Assurance Program (ASQAP). As part of ASQAP, the NSW Food Authority is responsible for implementing the Shellfish Quality Assurance Program on the Manning River. The program includes water quality sampling each year in search of poor water quality risks. A growing area can be closed for harvesting if there is any potential risk from known triggers such as high rainfall or algal blooms.

The water quality sampling sites on Manning River monitored by the NSW Food Authority are shown in Figure G-2. A summary of all records of water quality data at the monitoring locations, including the median, and  $10^{th}$  percentile and  $90^{th}$  percentile values, are provided in Table G-3. Note that the salinity of seawater is approximately 35.0 ppt (or 56,000 µS/cm). Also note that water pH is not regularly sampled at these locations by the NSW Food Authority.

| Station          | Period         | Statistic                   | Salinity (ppt) |
|------------------|----------------|-----------------------------|----------------|
|                  |                | 10 <sup>th</sup> Percentile | 18.58          |
| Pelican Point    | 2003 - Present | Median                      | 23.50          |
|                  |                | 90 <sup>th</sup> Percentile | 30.04          |
|                  |                | 10 <sup>th</sup> Percentile | 13.90          |
| Mangrove         | 2003 - Present | Median                      | 21.00          |
| Island           |                | 90 <sup>th</sup> Percentile | 27.90          |
|                  |                | 10 <sup>th</sup> Percentile | 15.26          |
| Mitchells Island | 2003 - Present | Median                      | 20.05          |
|                  |                | 90 <sup>th</sup> Percentile | 27.20          |
|                  |                | 10 <sup>th</sup> Percentile | 14.36          |
| Scotts Creek     | 2003 - Present | Median                      | 20.80          |
|                  |                | 90 <sup>th</sup> Percentile | 27.24          |
|                  |                | 10 <sup>th</sup> Percentile | 14.76          |
| South Channel    | 2005 - Present | Median                      | 22.40          |
|                  |                | 90 <sup>th</sup> Percentile | 29.88          |

### Table G-3: Summary of statistics from the Manning River Shellfish Quality Assurance Program sampling sites



Figure G-2: Manning River Shellfish Quality Assurance Program sampling sites

#### Source: NSW Food Authority 2016

#### H1 Preamble

The following section provides a summary of the hydrodynamic numerical model adopted for the Manning River estuary. Results of the hydrodynamic modelling were used for the floodplain vulnerability assessments, detailed in Section 11 of the Methods report (Rayner et al., 2023).

### H2 Hydrodynamic model

Hydrodynamics is the study of water movement. In an estuary, three main elements control the movement of water (tidal hydrodynamics). This includes, estuary geometry, upstream catchment inflows and downstream ocean tides. The geometry of an estuary is defined by its width, length, depth or the shape and storage of sidearms. Upstream catchment inflows are based on rainfall and runoff and downstream tidal inflows are based on the water levels in the ocean.

#### H2.1 Numerical model

Numerical modelling of the Manning River estuary tidal hydrodynamics was undertaken using the RMA modelling suite (King, 2015). The RMA-2 hydrodynamic model solves the shallow water wave equations and is suitable for the simulation of flow in vertically, well-mixed water bodies such as estuaries. RMA-2 uses the principles of conservation of mass and momentum, and represents typical processes of bed and bank friction, turbulence and wind stress.

RMA-2 calculates a finite element solution of the Reynolds-form of the Navier-Stokes equations for turbulent flows. The main internal model parameters applied to the model are eddy viscosity, bed friction and turbulent mixing. The horizontal eddy viscosity ( $\epsilon$ ) is specified in terms of a scaled velocity and element size as presented in Equation H-1:

$$\varepsilon_{xy} = \alpha(x, y, t) \cdot V(x, y, t) \cdot \Delta_{elt}(x, y)$$

Where:

- $\epsilon$  = horizontal eddy viscosity (m<sup>2</sup>/s)
- V = velocity (m/s)
- $\alpha$  = non-dimensional scaling factor
- $\Delta_{\text{elt}}$  = is a length representative of the element size (m)

The RMA-2 model utilises a finite element mesh consisting of an irregular connection of nodes and elements to represent the model domain. Finite elements are suitable to model complex estuaries as the elements can vary in size and shape to represent the geometry of the waterbody. Accurate representation of the waterway geometry is important as it is a major factor in replicating and predicting tidal hydrodynamics.

Water levels and flow velocities are predicted at every node within the finite element mesh of the model. One dimensional (1-D) elements are used to represent channel flow velocities in one horizontal direction (i.e. upstream to downstream and where flow occurs perpendicular to the channel cross section),

**Equation H-1** 

whereas two dimensional (2-D) elements represent depth-averaged flow velocities in two-horizontal directions (i.e. x-y plane). RMA-2 simulates the process of bank wetting and drying as the water level changes through the use of marshing elements. Marshing simulates drying by approximating elements with a smaller width and higher friction for water transfer thereby effectively preventing flow in those elements while conserving mass.

#### H2.2 Model domain

A 1-D/2-D RMA-2 hydrodynamic model of the Manning River Floodplain was adopted from Miller and Tarrade (2010) and used to simulate the typical tidal water level variations within the estuary. This numerical model had been previously calibrated against water levels and tidal discharge throughout the estuary. The Manning River is a complex estuarine system which includes a number of tributary creeks, branch channels and two ocean entrances, the main entrance being at Harrington and the secondary entrance, Farquhar Inlet, which is often entirely closed by littoral sand (Miller and Tarrade, 2010)<sup>1</sup>. The model domain extended across the major tidal regions of the Manning River and its tributaries including Lansdowne River and Dawson River up to the tidal limit about 60 km upstream from the river mouth near Abbott's Falls at Killawarra. For this study, the hydrodynamic model was further extended through Cattai Creek using bathymetry used in the most recent numerical model for the flood study of the Manning River Flood floodplain developed by BMT WBM (2016). This was done to ensure the model extent covered all areas of interest where there were surveyed floodgate structures. The updated model area is shown in Figure H-1.



Figure H-1: Manning River estuary – tidal hydrodynamic model extent

<sup>&</sup>lt;sup>1</sup> In this particular hydrodynamic model Farquhar Inlet was assumed to be closed. Entrance conditions can significantly impact the tidal water levels throughout the entire estuary and therefore it is recommended that future studies investigate the sensitivity of this assumption further.

#### H2.3 Model inputs

The hydrodynamic model comprised of three (3) main inputs, including channel geometry, downstream ocean tidal water levels and upstream catchment inflows.

Upstream channel bathymetry was based on the previous tidal model developed for the Manning River Estuary by Miller and Tarrade (2010) and updated using bathymetry data from the Manning River Flood Study (BMT WBM, 2016). The model was also refined near the Harrington entrance using single beam bathymetry data sourced from NSW Office of Heritage (OEH).

Catchment inflows were based on observed river flow data from WaterNSW gauging stations in the upper Manning River catchment as shown in Figure H-2. Localised floodplain subcatchment runoff inflows were excluded from the model as sensitivity testing indicated that day-to-day water levels in the lower reaches of the estuary were found to be dominated by tidal fluctuations. The downstream ocean tidal boundary of the model was based on the observed water levels from the MHL station at Harrington (Station Number 208425).



Figure H-2: Location of WaterNSW river flow gauges with relation to the hydrodynamic model extent

| Table H-1: Summary of model boundary conditions |                |                   |                 |  |  |
|-------------------------------------------------|----------------|-------------------|-----------------|--|--|
| Gauging Station Name                            | Data<br>Source | Station<br>Number | Scale<br>Factor |  |  |
| Manning River at Killawarra                     | WaterNSW       | 208004            | 1               |  |  |
| Lansdowne River at<br>Lansdowne                 | WaterNSW       | 208015            | 1               |  |  |
| Harrington                                      | MHL            | 208425            | NA              |  |  |

#### H2.4 Model calibration

The hydrodynamic model for the Manning River estuary was calibrated to selected water level and tidal flow gauging stations for 1998. The year 1998 was selected based on short-term tidal flow gauging of the Manning Estuary which was recorded at various locations within the estuary on 3 November 1998 (MHL, 1999). These locations are shown in Figure H-3. Water level data was sourced from NSW DPIE Manly Hydraulics Laboratory (MHL). These locations are shown in Figure H-4.

The main internal model parameters for hydrodynamic calibrations in the RMA-2 model are eddy viscosity and friction (applied as Manning's n). The model was calibrated by adjusting the Manning's n value to match the observed flow, tidal ranges and phasings throughout the estuary. A Manning's n value of 0.23 was adopted throughout the entire model domain.

The flow calibration results are shown in Figure H-5 to Figure H-10. The water level calibration results for an 8-day window during this period are shown in Figure H-11 and Figure H-15. The model was calibrated (for dry weather periods) to less than 0.2 m for the entire estuary.



Figure H-3: Location of selected tidal flow gauging stations used for calibration of the Manning River estuary hydrodynamic model



Figure H-4: Location of selected water level stations used for calibration of the Manning River estuary hydrodynamic model

#### H2.5 Model verification

The calibrated model was then used to simulate a representative 'wet' year (i.e. more rain than average across the catchment) and a representative 'dry' year (i.e. less rain than average across the catchment) based on analysis of BOM rainfall records in Northern NSW. For this study, 2013 and 2019 were selected as the wet and dry years respectively. The model results from these simulations were then used to verify the tidal water calibrations throughout the estuary. Tidal water level verification plots for a 10-day window for the Manning Estuary for 2013 and 2019 are provided in Figure H-16 and Figure H-22.



Figure H-5: Manning hydrodynamic model flow calibrations at Station 208450



Figure H-6: Manning hydrodynamic model flow calibrations at Station 208452



Flow at Station 208453 (Manning River Scotts Creek Site 17 (Decomm)) on: 03/11/1998





Figure H-8: Manning hydrodynamic model flow calibrations at Station 208454



Figure H-9: Manning hydrodynamic model flow calibrations at Station 208459



Figure H-10: Manning hydrodynamic model flow calibrations at Station 208460



Figure H-11: Manning hydrodynamic model water level calibration results (1998) at Harrington (208425)



Figure H-12: Manning hydrodynamic model water level calibration results (1998) at Croki (209404)



Figure H-13: Manning hydrodynamic model water level calibration results (1998) at Farquhar Inlet (208415)



Figure H-14: Manning hydrodynamic model water level calibration results (1998) at Taree (208410)



Figure H-15: Manning hydrodynamic model water level calibration results (1998) at Wingham (208400)



Figure H-16: Manning hydrodynamic model water level verification results (2013) at Harrington (208425)



Figure H-17: Manning hydrodynamic model water level verification results (2013) at Croki (209404)



Figure H-18: Manning hydrodynamic model water level verification results (2013) at Farquhar Inlet (208415)



Figure H-19: Manning hydrodynamic model water level verification results (2013) at Dumaresq Island (208430)



Figure H-20: Manning hydrodynamic model water level verification results (2013) at Taree (208410)



Figure H-21: Manning hydrodynamic model water level verification results (2013) at Taree West (208420)



Figure H-22: Manning hydrodynamic model water level verification results (2013) at Wingham (208400)

### **Appendix I** Sensitive environmental receivers

#### I1 Preamble

Acid discharges from ASS-affected floodplains are well reported to cause stress to sensitive environmental receivers (Glamore, 2003; Rayner, 2010; Sammut et al., 1996; Winberg and Heath, 2010). Furthermore, water control structures associated with ASS-affected drains, such as one-way floodgates, prohibit the passage of aquatic species and limit the overall primary production of estuaries (Winberg and Heath, 2010). Sensitive environmental receivers are widespread throughout the Manning River estuary. This section provides an overview of the proximity of sensitive environmental receivers to acidic drainage areas within the study area, and the information provided in this section was used to inform the prioritisation of each sub-catchment.

### I2 Sensitive environmental receivers of the Manning River Estuary

Several sensitive environmental receivers were identified during the course of this investigation. Both aquatic and terrestrial ecological communities and sensitive locations were identified and mapped as provided in Figure I-1 to Figure I-4, including:

- Key fish habitat relating to the Fisheries Management Act (1994);
- Oyster leases;
- Estuarine macrophytes; and
- Coastal wetlands as defined by the State Environmental Planning Policy (Coastal Management) 2018.

The proximity of each sub-catchment in the study area to downstream stationary sensitive receivers was calculated as provided in Table I-1.

| Estuarine Macrophytes |               |           |          |           |                                                      |                                                                    |
|-----------------------|---------------|-----------|----------|-----------|------------------------------------------------------|--------------------------------------------------------------------|
| Subcatchment          | Oyster leases | Saltmarsh | Seagrass | Mangroves | Coastal<br>Management<br>SEPP<br>coastal<br>wetlands | SER within sub-catchment                                           |
| Big Swamp             | 4,200         | 0         | 3,600    | 0         | 0                                                    | Coastal wetlands, key fish habitat                                 |
| Bukkan Bukkan Creek   | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, mangroves, key fish habitat           |
| Cattai Creek          | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, mangroves, key fish habitat           |
| Coopernook            | 2,400         | 0         | 3,300    | 0         | 0                                                    | Key fish habitat                                                   |
| Croakers Creek        | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, mangroves, key fish habitat           |
| Dawson River          | 8,400         | 800       | 0        | 0         | 0                                                    | Coastal wetlands                                                   |
| Dumaresq Island       | 5,900         | 500       | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, key fish habitat                      |
| Ghinni Ghinni         | 4,200         | 0         | 0        | 0         | 0                                                    | Coastal wetlands, key fish habitat                                 |
| Glenthorne            | 10,400        | 0         | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, mangroves, key fish habitat           |
| Harrington            | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, mangroves, key fish habitat           |
| Jones Island          | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, mangroves, key fish habitat           |
| Mambo Island          | 0             | 0         | 0        | 0         | 0                                                    | Key fish habitat                                                   |
| Mitchells Island      | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, seagrass, saltmarsh, mangroves, key fish habitat |
| Moto                  | 2,700         | 0         | 2,200    | 0         | 0                                                    | Key fish habitat                                                   |
| Old Bar               | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, key fish habitat                                 |
| Pampoolah             | 0             | 0         | 0        | 0         | 0                                                    | Coastal wetlands, saltmarsh, mangroves, key fish habitat           |
| Taree Estate          | 17,000        | 2,400     | 0        | 0         | 0                                                    | Coastal wetlands, key fish habitat                                 |

Table I-1: Summary of approximate proximity (in metres) of sensitive environmental receivers (SER) to each sub-catchment within the study area



Figure I-1: Key fisheries habitat (Source: NSW DPI Fisheries)



Figure I-2: Priority oyster leases (Source: NSW DPI Fisheries)



Figure I-3: Estuarine macrophytes (Source: NSW DPI Fisheries)



Figure I-4: Coastal Management SEPP coastal wetlands (Source: SEED NSW data portal)<sup>1</sup>

<sup>1</sup> Note that the State Environmental Planning Policy No. 14 (SEPP14) for Coastal Wetlands was repealed by cl 9 (a) of State Environmental Planning Policy (Coastal Management) 2018 (106) with effect from 3.4.2018. This policy aims to promote an integrated and co-ordinated approach to land use planning in the coastal zone to ensure that these areas, including coastal wetlands are preserved and protected in the environmental and economic interests of the State.

### Appendix J Heritage

#### J1 Preamble

Heritage listings in NSW are protected by law under the Heritage Act, 1977 (amended 1998) and the Environmental Planning and Assessment Act 1979. Nationally heritage items are protected under the Environment Protection and Biodiversity Conservation Act 1999. Heritage items protected include:

- Items listed in local councils Local Environmental Plan (LEP) or Regional Environmental Plan (REP);
- Items listed on the State Heritage Register;
- Items listed on State Agency Heritage Registers (under Section 170 of the Heritage Act, 1977);
- Items listed on Interim Heritage Orders;
- Items listed on the Aboriginal Heritage Information Management System (AHIMS);
- Items listed on the Maritime Heritage Database;
- Items listed on the Commonwealth Heritage List; and
- Items listed on the National Heritage List.

Implementation of management options need to consider any heritage listed items that may be affected during on-ground works. Heritage items fall under the category of implementation constraint in the prioritisation methodology (see Section 2 of the Methods report (Rayner et al., 2023)). Note that new heritage items are continuously being registered. Subsequently, items identified and presented in this section should only be used as a guide and it is encouraged that anyone seeking to identify the most recent information on heritage listed items will need to consult the relevant registers which contain current information.

#### J2 Aboriginal heritage

Aboriginal sites across the Manning River floodplain listed within the Aboriginal Heritage Information Management System (AHIMS) have been identified to determine if they affect the implementation of management options. Due to the sensitive nature of this information no data can be presented here, however, some aboriginal heritage items are presented within the NSW State Heritage Inventory where there is no restriction (see Section J3).

Note that for any works that will alter the landscape due diligence may need to be carried out as per the National Parks and Wildlife Act 1974. Searching AHIMS is only part of this due diligence process. Furthermore, AHIMS data sourced for this study is only up to date as of October 2019. Prior to any activities being undertaken such as actions outlined in the management options, a renewed search of AHIMS will need to be undertaken to ensure the most current information is being used.

#### **J3** European heritage

Heritage listed items, including items of European origin, have been identified from the Commonwealth Heritage List, National Heritage List and the NSW State Heritage Inventory, which includes:

• Items listed on the State Heritage Register;

- Listed Interim Heritage Orders; and
- Items listed on State Agency Heritage Registers.

Figure J-1 outlines items that have been identified on the National Heritage List, the NSW State Heritage Register and the NSW Office of Environment and Heritage (OEH) Agency Register, the Historic Heritage Information Management System (HHIMS). Items listed on the Commonwealth Heritage Register overlap with the NSW State Heritage Register in the study region so only the NSW State Register items have been displayed. As of June 2020, no Interim Heritage Order items were identified within the study area. Note, prior to any activities being undertaken such as actions outlined in the management options, a renewed search of registers will need to be undertaken to ensure the most current information is being used.



Figure J-1: Heritage items listed on Australian and NSW registers with location information

For an up to date list of these items consult the NSW State Heritage Inventory.

#### J4 Maritime heritage

In addition to provisions outlined under the NSW Heritage Act 1977, items of maritime heritage are protected by the Commonwealth Underwater Cultural Heritage Act 2018. Maritime heritage items can be found on the following registers:

- The Australian Underwater Cultural Heritage Database (AUCHD); and
- The NSW Maritime Heritage Database.

Items of maritime heritage listed in the aforementioned registers are displayed in Figure J-2. Note that items added after June 2020 are not included in this list and prior to any activities being undertaken, such as actions outlined in the management options, a renewed search of registers will need to be undertaken to ensure the most current information is being used. Furthermore, the Maritime Heritage specialist services team should be contacted to determine if there are any items of importance that have not been listed.



Figure J-2: Maritime heritage items listed on Australian and NSW registers.

ANZECC and ARMCANZ 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at <u>www.waterquality.gov.au/anz-guidelines</u>.

BMT WBM 2016. Review and Update Manning River Flood Study.

- Dove, M. C. 2003. Effects of Estuarine Acidification on Survival and Growth of the Sydney Rock Oyster Saccostrea Glomerata. PhD Thesis, The University of New South Wales.
- DPIE. 2020. *eSpade NSW Soil and Land Information* [Online]. Available: <u>https://www.environment.nsw.gov.au/eSpade2WebApp</u> [Accessed 2019].
- Glamore, W. 2003. *Evaluation and Analysis of Acid Sulfate Soil Impacts via Tidal Restoration.* PhD Thesis, Faculty of Engineering, University of Wollongong.
- Glamore, W., Ruprecht, J., Rayner, D. & Smith, G. 2014. Big Swamp Rehabilitation Project: Hydrological Study, Water Research Laboratory, WRL Technical Report No. 2012/23.
- Glamore, W., Ruprecht, J. E. & Rayner, D. 2016. Lower Manning River Drainage Remediation Action Plan. Manly Vale, NSW: Water Research Laboratory, University of New South Wales.
- Hirst, P., Slavich, P., Johnston, S. & Walsh, S. 2009. Assessment of Hydraulic Conductivity in Coastal Floodplain Acid Sulphate Soils on the North Coast of NSW. Orange, Australia: Industry & Investment NSW.
- Johnston, S. 2007. Cattai Creek Preliminary Acid Sulfate Soil Assessment.
- Johnston, S. G. & Slavich, P. G. 2003. Hydraulic conductivity a simple field test for shallow coastal acid sulfate soils. Bruxner Highway, NSW: NSW Agriculture, Wollongbar Agricultural Institute.
- King, I. P. 2015. Documentation RMA2 A Two Dimensional Finite Element Model for Flow in Estuaries and Streams. Sydney Australia.
- MHL 1999. Manning River Estuary Tidal Data Collection November-December 1998.
- Miller, B. M. & Tarrade, L. 2010. Manning River Saline Dynamic Modelling.
- Rayner, D. 2010. Understanding the Transport and Buffering Dynamics of Acid Plumes within Estuaries. Water Research Laboratory, WRL Research Report 238.
- Rayner, D. S., Harrison, A. J., Tucker, T. A., Lumiatti, G., Rahman, P. F., Waddington, K., Juma, D. & Glamore, W. 2023. Coastal Floodplain Prioritisation Study – Background and Methodology WRL TR2020/32. Water Research Laboratory, University of New South Wales.
- Ruprecht, J. E., Glamore, W., Harrison, A. J. & Chan, J. 2020a. Big Swamp Rehabilitation Project 2019 Annual Monitoring Report.
- Ruprecht, J. E., Glamore, W., Harrison, A. J. & Gawlik, E. 2017. Big Swamp Wetland: Monitoring Review.
- Ruprecht, J. E., Tucker, T. A., Coghlan, I. R. & Glamore, W. C. 2020b. Pampoolah Floodplain Remediation Investigation and Riverbank Vulnerability Assessment.
- Sammut, J., White, I. & Melville, M. D. 1996. Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils. *Marine & Freshwater Research*, 669-684.
- Smith, R. J., Sammut, J. & Dove, M. C. 1999. Impacts of Acid Water Drainage on the Manning Oyster Industry.
- Sonter, L. 1999. Spatial Characteristics of Acid Sulfate Soil Induced Estuarine Acidification within Cattai Creek.
- Winberg, P. & Heath, T. 2010. Ecological Impacts of Floodgates on Estuarine Tributary Fish Assemblages. Report to the Southern Rivers Catchment Management Authority.
- WRL 2019. 226 Bakers Lane, Coralville: Acid Sulfate Soil and Hydraulic Conductivity Assessment.