Tweed River Floodplain Prioritisation Study: Appendix A – L

WRL TR 2020/04, June 2023

By T A Tucker, D S Rayner, A J Harrison, G Lumiatti, P F Rahman, D M Gilbert and W C Glamore

A1 Preamble

Up to date mapping of floodplain waterways within the study area was required to inform the prioritisation assessment and can also be used to inform the implementation of management options. The following section summarises the available existing data which maps present day waterways across the Tweed River floodplain (below 5 m AHD) and also presents an updated spatial waterways data layer, created using existing data, which provides a consistent and uniform dataset across the floodplain. This updated spatial layer incorporates the results of a detailed multi criteria analysis for categorising a waterways as natural waterbody watercourse, artificial waterbody, watercourse or connector watercourse. Details on the development of the updated spatial layer and the multi criteria analysis can be found in Section 12 of the Methods report (Rayner et al., 2023). The updated waterways layer was used to calculate subcatchment drainage density during the subcatchment prioritisation assessment, and will also be a valuable tool for informing management option implementation.

A2 Existing waterway data

Available information for the floodplain waterway network across the Tweed River floodplain was from multiple data sources as summarised in Table A-1.

Dataset	Data format	Provides waterway naming information?	Distinguishes between artificial and natural waterways?	Local or state wide dataset?	
Geoscience Australia surface hydrology lines	Geodatabase	Yes	Yes	State wide	
NSW Spatial Services hydrology lines	Shapefile	Yes	No	State wide	
NSW Spatial Services hydrology lines	WMS layer	Yes	Yes	State wide	
NSW DPI Fisheries manmade drains	Shapefile	No	Yes	State wide	
Tweed Shire Council drainage lines	Shapefile	No	No	Local	
Tweed Shire Council constructed drains	Shapefile	No	Yes	Local	

Table A-1: Summary of available waterway data

A3 Waterway classification

For this study, an updated waterways spatial dataset was developed for the Tweed River floodplain to incorporate the most recent changes to the waterway network and ensure a consistent level of detail across the floodplain. The alignments and configurations of floodplain waterways are continuously changing due to varying management requirements of waterway owners across the floodplain. Inspection of the existing waterway data showed varying degrees of accuracy and detail for the different

datasets in Table A-1 reflecting the different purposes for which the individual spatial layers had been created.

To ensure an up-to-date waterways dataset across all areas in the Coastal Floodplain Prioritisation Study, a multi criteria analysis was completed to categorise waterways into the following:

- Natural waterbody watercourses a natural waterway that pre-dates European settlement. Natural waterbody watercourses are typically sinuous and follow geological features;
- Artificial waterbodies a constructed waterway that was purpose built to enhance drainage of backswamps or redirect water. Artificial waterways are typically straight, and deep;
- Watercourses typically a waterway that follows a natural drainage system, but has been heavily modified or disconnected from the upstream catchment; and
- Connector watercourses a waterway with either natural or artificial sections that provides a connection between two natural waterbody watercourses. Typically connector watercourses flow through a drainage network which was once a backswamp connecting the upper catchment to the river.

Further details on the approach taken to update the waterways spatial layer and the multi criteria analysis can be found in Section 12 of the Methods report (Rayner et al., 2023). The updated spatial dataset and results of the multi criteria analysis are presented in Figure A-1. Note, update and classification of waterways was completed for elevations below 5 m Australian Height Datum (AHD) as is consistent with catchment delineation used for the subcatchment prioritisation.

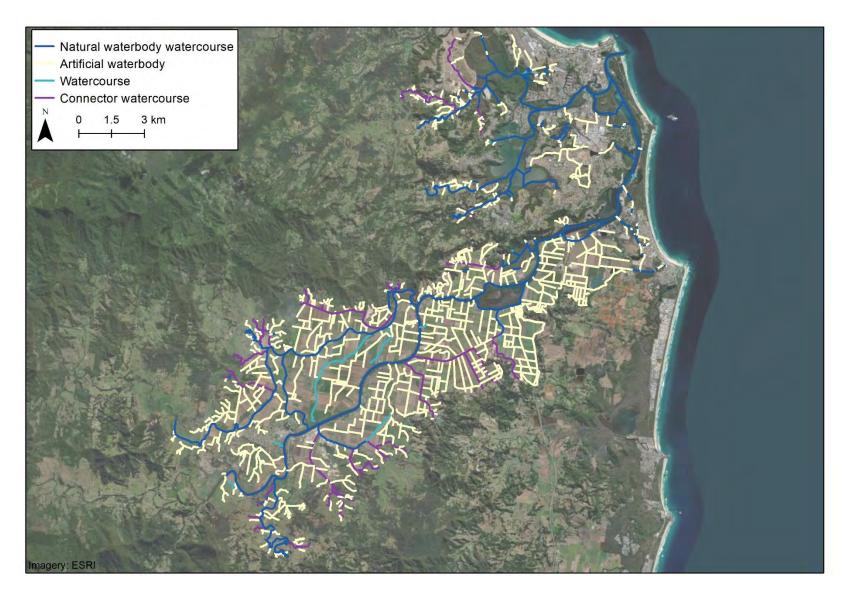


Figure A-1: Tweed River floodplain waterways

Tweed River Floodplain Prioritisation Study, WRL TR 2020/04, June 2023

A4 Drainage density

The drainage density of each subcatchment is determined by the total waterway length across the subcatchment relative to the subcatchment area affected by acid sulfate soils (see Section 4.3.1 of the Methods report (Rayner et al., 2023)). When assessing the length of waterways that contribute to the drainage of an acid sulfate soil affected landscape, all waterways within the subcatchment boundaries were included in the priority assessment to provide a total waterway length for each subcatchment, as all waterways have the potential to impact acid sulfate soil oxidation and acid mobilisation. A summary of the floodplain drainage density analysis is provided in Table A-2 and the ranking of the drainage density factors for each subcatchment of the Tweed River floodplain is presented in Figure A-2.

Subcatchment	Total waterway length (m)	Floodplain area* (km²)	Drainage density (m/km²)	Drainage density rank**
Bilambil/Terranora	15,300	3.41	4,487	6
Cobaki	20,260	6.78	2,986	12
Commercial Road	10,550	2.32	4,544	4
Condong	54,510	13.90	3,897	10
Dulguigan	28,620	6.99	4,094	8
Dunbible Creek	11,800	2.17	5,450	1
East Chinderah	7,350	3.84	1,912	14
Kynnumboon	34,690	7.69	4,497	5
North Tumbulgum	31,320	6.55	4,781	3
South Murwillumbah	15,100	3.81	3,966	9
Stotts Creek	27,140	5.07	5,424	2
Tumbulgum/Eviron	54,870	12.81	4,287	7
Tygalgah	48,670	19.43	2,505	13
West Chinderah	44,770	11.69	3,829	11

Table A-2: Floodplain drainage density

* Floodplain area is calculated as the area below 5 m AHD that is high or low risk in the acid sulfate soil risk mapping.

** Ranking is from highest drainage density to lowest drainage density.

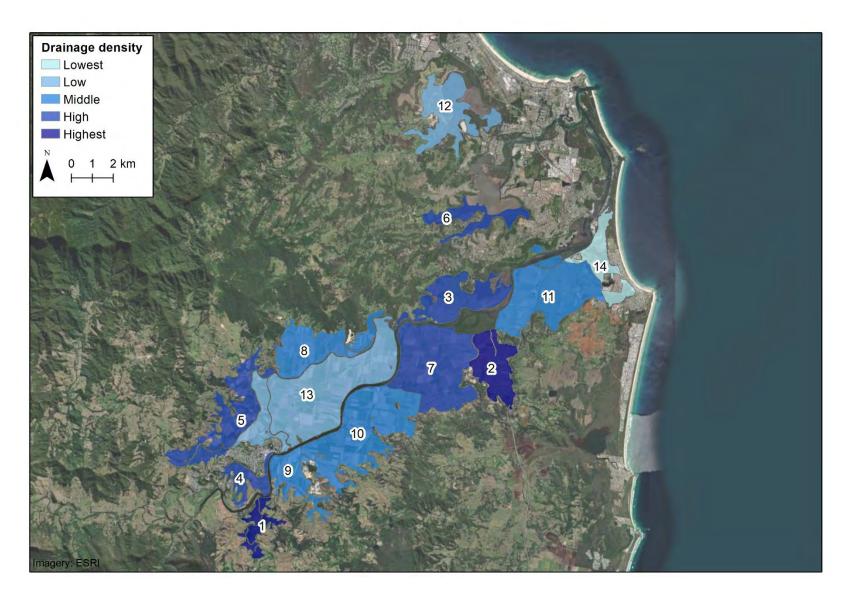


Figure A-2: Floodplain drainage density ranking

Tweed River Floodplain Prioritisation Study, WRL TR 2020/04, June 2023

B1 Preamble

The following appendix details the catchment hydrology which is included in the normalised inflow factor in the acid sulfate soil prioritisation assessment, described in detail in Section 4.3.2 in the Methods report (Rayner et al., 2023). This includes the calculation of a runoff coefficient (Section B2) and a catchment size factor (Section B3), to determine an inflow factor (Section B4).

B2 Runoff coefficient

The catchment runoff assessment for the Tweed River floodplain was undertaken by comparing the volume of runoff generated by precipitation from incident rainfall with the observed subsequent streamflow data. Details of the methods used to calculate the runoff coefficient can be found in Section 4.3.2 in the Methods report (Rayner et al., 2023). The WaterNSW network of river flow gauges the available daily rainfall data from the Bureau of Meteorology (BOM) for the Tweed River floodplain is shown in Figure B-1.

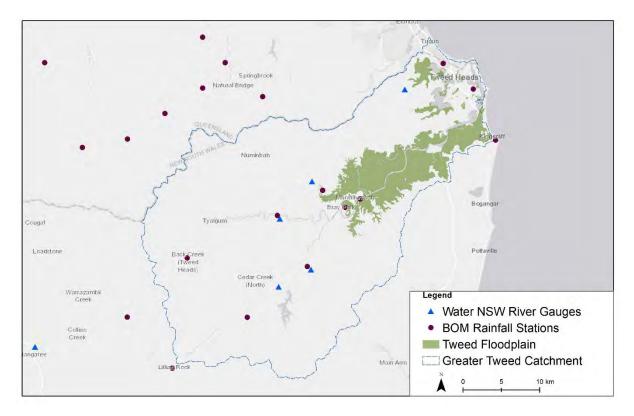
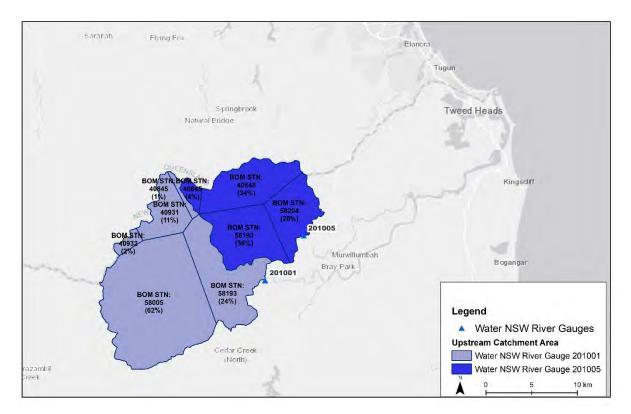



Figure B-1: Tweed River Floodplain location of rainfall and runoff stations

Stream flow gauges upstream of the tidal confluence that are most representative of the lower catchment rainfall-runoff conditions were selected for the catchment hydrology analysis. WaterNSW gauging stations 201001 and 201005 were selected for the Tweed River floodplain assessment. The upstream contributing areas for these sites were delineated using standard GIS techniques based on a digital elevation model (DEM) of the catchment. Daily rainfall data relative to each river gauging station

was sourced from the BOM database and a Thiessen polygon approach was applied to weight the total rainfall to upstream areas. The location of the gauging sites, upstream catchment area of the gauging sites, and the BOM rainfall contributions used in the analysis are summarised in Figure B-2.

Figure B-2: Upstream catchment of selected flow sites including rainfall contribution (shown in parenthesis)

The runoff coefficient provides a relationship between rainfall-runoff volumes and allows for varying amounts of pervious and impervious surfaces across a catchment. It follows that if the predicted runoff volume from incident rainfall is known, and is compared to the available observed streamflow data, then the volume difference would be equivalent to the runoff coefficient (assuming the catchment was 100% impervious). For consistency, in this study, it was also assumed that land-use type, vegetation, and the proportion of pervious and impervious surfaces, was the same for each subcatchment in the floodplain (i.e. the runoff coefficient for this study represents an amalgamated factor taking into account catchment variables such as soil type, land use, etc. for each subcatchment).

The runoff co-efficient was selected by comparing the annual time-series of streamflow data for the predicted runoff volume calculated for the selected gauging stations. Figure B-3 shows an example time-series of predicted and observed runoff for 2006. This analysis yielded an estimated runoff coefficient of 0.3, which was applied to Tweed River floodplain subcatchments for the acid prioritisation assessment.

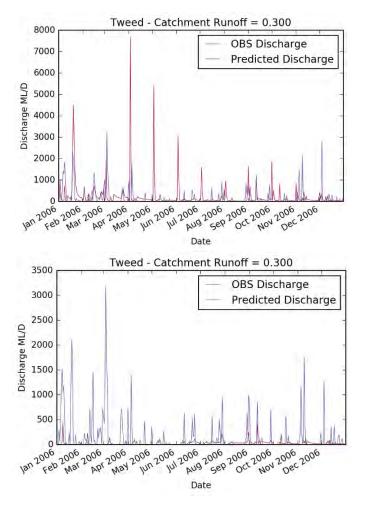


Figure B-3: Predicted and observed runoff for the catchment area upstream of river gauging station 201001 (top) and station 201005 (bottom)

B3 Catchment size factor

The size of the subcatchment influences the hydrological response of the site during a rainfall event. When comparing drainage areas of similar acidity, a large catchment will have a greater potential to discharge more acid than a small catchment. That is, an ASS affected drainage unit with high-risk ASS and a large catchment area contributing to acid drainage has a greater potential to produce higher potential acid flux during a post-flood recession period. Subsequently, accurate estimates of subcatchment areas and the potential discharge from those areas is critical to assessing subcatchments that are of a high-risk for acid drainage.

For the purpose of this study, the floodplain subcatchments have been defined as areas that are below 5 m AHD and classified as at risk for ASS. The whole floodplain area is considered to contribute to acid drainage risk. Upland catchments (above 5 m AHD) were divided into areas that discharge to the estuary via an end-of-system floodgate structure or discharge uninhibited to the estuary. In this study, only upland catchments that are upstream of floodgates have been considered to contribute to acid drainage potential. These areas were identified using information on floodgate infrastructure and the NSW hydrography layer. Contributing catchments were then delineated using standard GIS techniques as shown in Figure B-4.

The total areas of each subcatchment were then normalised against the subcatchment with the largest total area (i.e. catchment size factor = 1.0) for comparison.

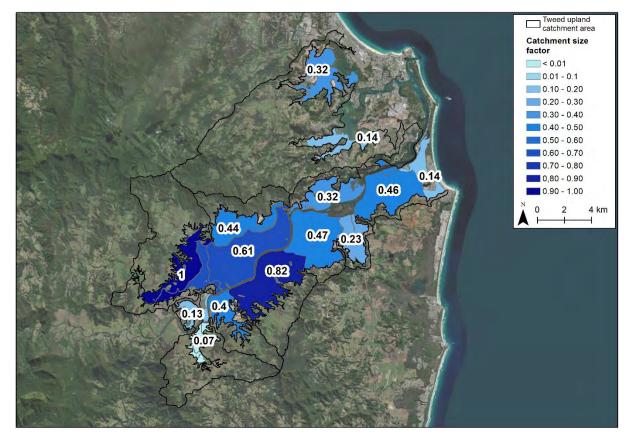


Figure B-4: Catchment size factor for each subcatchment in the Tweed River estuary

B4 Normalised inflow factor

The combination of a runoff coefficient and a normalised catchment size factor is used to provide an estimation of the relative water yield of each floodplain subcatchment. The inflow factor is calculated as per Equation B-1.

Normalised inflow factor = Runoff coefficient × Catchment Size Factor Equation B-1

The inflow factors for each Tweed River floodplain subcatchment are detailed in Table B-1 and shown in Figure B-5.

			-	•	
Subcatchment	Runoff coefficient	Upland catchment area (m²)	Total catchment area (m²)	Catchment size factor	Inflow factor
Condong	0.3	13,269,800	27,168,800	0.815	0.245
Dunbible Creek	0.3	273,300	2,438,800	0.073	0.022
South Murwillumbah	0.3	9,660,900	13,468,500	0.404	0.121
Kynnumboon	0.3	25,637,750	33,332,000	1.000	0.300
East Chinderah	0.3	940,900	4,783,600	0.144	0.043
Dulguigan	0.3	7,620,150	14,610,650	0.438	0.132
Commercial Road	0.3	1,922,200	4,244,400	0.127	0.038
Tumbulgum/Eviron	0.3	2,895,600	15,701,300	0.471	0.141
Stotts Creek	0.3	2,607,200	7,673,550	0.230	0.069
West Chinderah	0.3	3,479,100	15,171,750	0.455	0.137
Cobaki	0.3	3,757,400	10,541,200	0.316	0.095
Bilambil/Terranora	0.3	1,307,800	4,716,900	0.142	0.042
Tygalgah	0.3	895,200	20,324,550	0.610	0.183
North Tumbulgum	0.3	4,025,200	10,576,550	0.317	0.095

Table B-1: Catchment hydrology analysis summary table

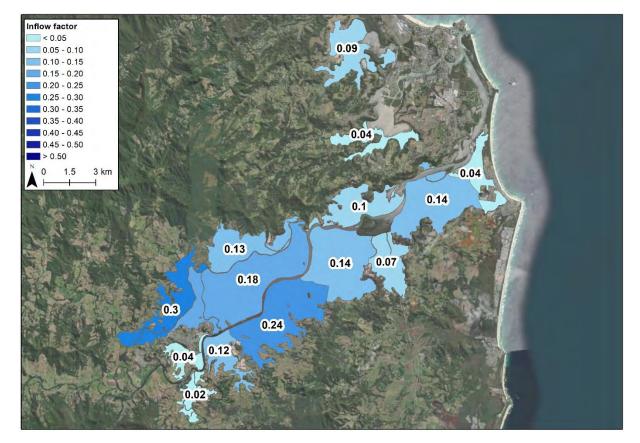
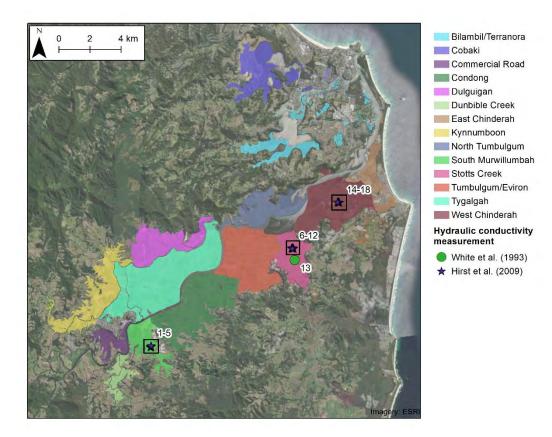


Figure B-5: Subcatchment inflow factors

Appendix C Groundwater hydraulic conductivity

C1 Preamble

The following section outlines the saturated hydraulic conductivity data (hereafter referred to as hydraulic conductivity) used in the prioritisation method (Section 4) for determining the groundwater factor for the Tweed River floodplain. A detailed discussion of the principles relating to hydraulic conductivity and data collection can be found in Appendix B of the Methods report (Rayner et al., 2023). Details on the techniques and methods used to collect the field data presented in this section can be found in Appendix A of the Methods report (Rayner et al., 2023).


C2 Existing saturated hydraulic conductivity data

A data gaps analysis was completed to identify existing hydraulic conductivity data within the Tweed River floodplain. The data identified was limited to certain areas of the floodplain as listed in Table C-1 and spatially presented in Figure C-1. Data was available from the following sources:

- White et al. (1993) measured hydraulic conductivity within the jarosite layer (-0.2m to 0.4m AHD) from a range of sites at Stotts Creek. Hydraulic conductivity data was collected using the auger hole method. The hydraulic conductivity value showed in Table C-1 is the average hydraulic conductivity value across all sites.
- Hirst et al. (2009) collected hydraulic conductivity data for ASS across six different NSW North Coast floodplains (Tweed, Richmond, Clarence, Hastings, Macleay, and Manning), using the pit bailing method. On the Tweed River floodplain, data was collected at South Murwillumbah, Stotts Creek and West Chinderah. The hydraulic conductivity values were calculated using the Bouwer and Rice (1983) and Boast and Langebartel (1984) techniques.
- Johnston et al. (2009) presented hydraulic conductivity data collected using the pit bailing method for the South Murwillumbah, Stotts Creek and West Chinderah subcatchments. Close inspection indicated that this data is the same that was presented by Hirst et al. (2009) so it has not been included in the analysis.

	Saturated hydraulic conductivity (m/day)					
Point ID	Bouwer and Rice (1983) method	Boast and Langebartel (1984) method	Other method	Risk classification	Reference	Method
1	3.3	4.6		Moderate	Hirst et al. (2009)	Pit bailing
2	5.0	7.1		Moderate	Hirst et al. (2009)	Pit bailing
3	1.7	2.0		Moderate	Hirst et al. (2009)	Pit bailing
4	1.0	1.9		Low - Moderate	Hirst et al. (2009)	Pit bailing
5	1.3	1.8		Moderate	Hirst et al. (2009)	Pit bailing
6	3.3	6.1		Moderate	Hirst et al. (2009)	Pit bailing
7	3.2	5.3		Moderate	Hirst et al. (2009)	Pit bailing
8	1.6	3.4		Moderate	Hirst et al. (2009)	Pit bailing
9	3.9	8.1		Moderate	Hirst et al. (2009)	Pit bailing
10	6.6	10.8		Moderate - High	Hirst et al. (2009)	Pit bailing
11	3.5	4.1		Moderate	Hirst et al. (2009)	Pit bailing
12	3.1	3.7		Moderate	Hirst et al. (2009)	Pit bailing
13			0.79	Low	White et al. (1993)	Auger hole
14	1.2	1.1		Low	Hirst et al. (2009)	Pit bailing
15	1.0	1.0		Low	Hirst et al. (2009)	Pit bailing
16	0.5	0.5		Low	Hirst et al. (2009)	Pit bailing
17	0.8	0.9		Low	Hirst et al. (2009)	Pit bailing
18	0.4	0.6		Low	Hirst et al. (2009)	Pit bailing

Table C-1: Summary of existing hydraulic conductivity data in the Tweed River floodplain

Figure C-1: Existing saturated hydraulic conductivity data available on the Tweed River floodplain

C3 Data collection

Following the data gaps analysis, a data collection program was completed to further supplement existing data. The auger hole slug test method was used to determine the hydraulic conductivity across the coastal floodplains. This method was chosen:

- Due to drought conditions occurring at the time of field investigations, and the water table depth was too low to determine hydraulic conductivity using the standard pit bailing method at many sites;
- As it was easily implemented using the existing soil sampling equipment and did not require additional large machinery to be transported on-site; and
- As it allowed for hydraulic conductivity measurements to be taken at most soil sample locations.

A detailed description of the sampling procedure and data analysis techniques used to calculate the hydraulic conductivity can be found in Appendix B of the Methods report (Rayner et al., 2023). The hydraulic conductivity measurements obtained across the Tweed River floodplain are summarised in Table C-2 and the measurement location shown in Figure C-2.

During the data collection field campaign, it was observed that the water table within the sample hole used to measure hydraulic conductivity was below the mean low water spring (MLWS) tide level of nearby waterways. This was due to the ongoing drought conditions that were prevalent at the time of data collection (August 2019 – March 2020). The result of this was that the hydraulic conductivity measured using the slug test method is of a soil layer that is unlikely to contribute to export of acid via horizontal water movement. For this reason, it was decided that only hydraulic conductivity

measurements where the water table was above the MLWS tide level would be used. This meant that only a selection of measurements in Table C-2 are representative of groundwater flow potential within acidic soil layers and are therefore applicable in the prioritisation methodology. Hydraulic conductivity data that has been used for the Tweed River floodplain to supplement existing data for the calculation of the groundwater factor and subsequently the risk ratings of the subcatchments within the floodplain, are identified in Table C-2 and shown in Figure C-2.

Location ID	Easting (m) GDA94	Northing (m) GDA94	Hydraulic Conductivity (m/day)	Risk Classification	Measurement method	Data used for prioritisation?*
TP_26_S	541255.7	6871950.9	0.4	Low	Auger hole	Yes
TP_33_S	538982.5	6863861.9	211.3	Extremely high	Auger hole	Yes
TW_01_A	547286.9	6877932.9	0.3	Low	Auger hole	Yes
TW_03_A	545523.1	6872959.1	0.4	Low	Auger hole	Below MLWS
TW_04_P	545155.8	6872789.3	0.3	Low	Auger hole	Below MLWS
TW_05_P	544820.0	6871473.4	0.3	Low	Auger hole	Below MLWS
TW_07_A	537526.5	6868235.8	0.1	Low	Auger hole	Yes
TW_10_A	538147.6	6865632.6	0.1	Low	Auger hole	Yes
TW_12_A	540027.8	6865836.7	0.3	Low	Auger hole	Below MLWS
TW_13_A	542040.1	6865445.9	0.2	Low	Auger hole	Below MLWS
TW_13_P	543855.7	6869001.7	2.8	Moderate	Auger hole	Below MLWS
TW_27_A	540215.8	6869551.5	3.3	Moderate	Auger hole	Below MLWS
TW_27_P	539680.5	6869308.9	0.5	Low	Auger hole	Below MLWS
TW_31_P	536772.9	6867337.5	0.3	Low	Auger hole	Yes
TW_32_A	538725.0	6865243.3	0.7	Low	Auger hole	Below MLWS
TW_35_P	541453.3	6865542.3	0.3	Low	Auger hole	Below MLWS
TW_37_P	544020.7	6867003.8	5.0	Moderate	Auger hole	Below MLWS
TW_38_A	545358.8	6869126.9	0.4	Low	Auger hole	Below MLWS
TW_42_A	547652.2	6871886.3	0.7	Low	Auger hole	Below MLWS
TW_43_P	548377.3	6871744.6	2.1	Moderate	Auger hole	Below MLWS
TW_45_P	543189.1	6867459.4	2.9	Moderate	Auger hole	Yes
TW_46_P	545905.6	6871366.8	2.7	Moderate	Auger hole	Yes

 Table C-2: Summary of saturated hydraulic conductivity data collected by WRL and used for the subcatchment prioritisation

*Note: Only hydraulic conductivity values where the water table was above the MLWS level were used for subcatchment prioritisation.

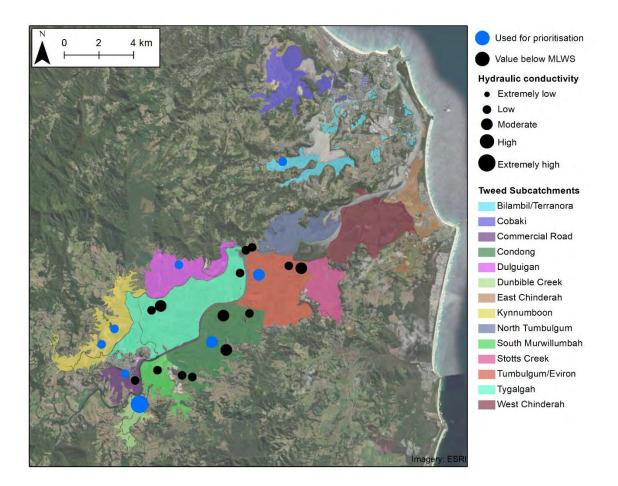


Figure C-2: Location of saturated hydraulic conductivity data collected by WRL and data used during the subcatchment prioritisation

C4 Summary of saturated hydraulic conductivity risk ratings

Hydraulic conductivity measurements have been used to determine a risk rating which forms part of the groundwater factor during the subcatchment prioritisation (see Appendix B of the Methods report (Rayner et al., 2023)). The risk rating applies on a scale of one (1) to five (5) corresponding to the risk classifications with extremely low equating to a risk rating of one and extremely high equating to a risk rating or five. This results in subcatchments with larger hydraulic conductivities having an increased risk as they are able to transport larger volumes of acidic groundwater to the estuary.

Note that the spatial coverage of hydraulic conductivity data across certain subcatchments of the Tweed River floodplain is poor. This is due to limitations experienced in the field investigations including situations whereby the groundwater table was sufficiently deep that no hydraulic conductivity measurements within contributing acidic soil layers could be taken. For subcatchments where there was no available data, it has been interpolated from adjacent subcatchments:

- Tygalgah has been assumed to have the same hydraulic conductivity as Dulguigan;
- North Tumbulgum has been assumed to have the same hydraulic conductivity as West Chinderah;
- East Chinderah has been assumed to have the same hydraulic conductivity as West Chinderah; and

• Cobaki has been assumed to have the same hydraulic conductivity as Bilambil/Terranora.

Since hydraulic conductivity measurements across ASS affected floodplains can be highly variable, further hydraulic conductivity investigations may be required to add further detail to the management options. An overall summary of the risk associated with hydraulic conductivity for each subcatchment is provided in Table C-3 and Figure C-3.

Subcatchment	Hydraulic conductivity classification	Hydraulic conductivity risk rating	Number of data points per area*			
Bilambil/Terranora	Low	2	1			
Cobaki*	Low	2	0			
Commercial Road	Low	2	1			
Condong	Moderate	3	1			
Dulguigan	Low	2	1			
Dunbible Creek	Extremely high	5	1			
East Chinderah*	Low	2	0			
Kynnumboon	Low	2	2			
North Tumbulgum*	Low	2	0			
South Murwillumbah	Moderate	3	5			
Stotts Creek	Moderate	3	8			
Tumbulgum/Eviron	Moderate	3	1			
Tygalgah*	Low	2	0			
West Chinderah	Low	2	5			

Table C-3: Summary of saturated hydraulic conductivity for each subcatchment in the Tweed River floodplain

* Where no data was available risk classifications were interpolated from adjacent subcatchments.

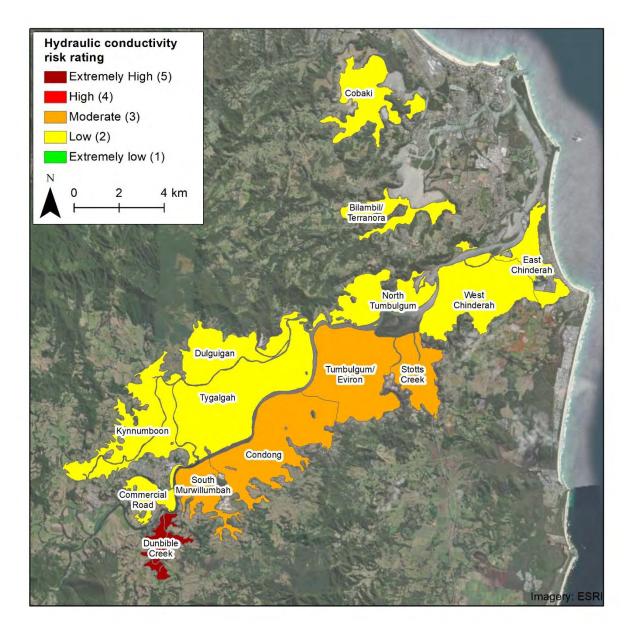


Figure C-3: Risk ratings for saturated hydraulic conductivity for each subcatchment in the Tweed River floodplain

D1 Preamble

This section provides an overview of the soil profile data, such as surface elevation, profile depths and minimum pH available within the Tweed River floodplain. This includes existing data available on the NSW Government eSPADE database and data in published literature where applicable (Section D2). In areas with limited existing soil profile information, a targeted field campaign was undertaken to address data gaps. Information on the data collected (including soil profiles) is summarised in Section D3.

D2 Existing soil profile data

Soil profile data on the Tweed River floodplain that was available prior to the commencement of this study was sourced from:

- eSPADE Database (DPIE, 2020);
- Smith et al. (2003);
- Kinsela (2007);
- Macdonald et al. (2004);
- Gilbert and Sutherland (2009); and
- JGA (2005).

D2.1 eSPADE database

eSPADE provides a database of information collected by earth scientists and other technical experts. eSPADE contains descriptions of soils, landscapes and other geographic features, and is used by the NSW Government, other organisations, and individuals, to improve planning and decision-making for land management. eSPADE contains extensive soil profile data for the Tweed area.

eSPADE data has been filtered to remove any profiles that do not contain acidity (pH) data for each of the layers. Elevation data has been extracted from a 1 m DEM of the Tweed River floodplain. Where data is available on the floodplain, it has been included in estimating acid export in the region. Note that a low pH often indicates oxidised acidic soils, particularly in conjunction with the presence of yellow/orange mottling (jarosite). A near neutral pH (pH 7 to 8) below an acidic layer indicates a potential acidic layer, often in conjunction with a soil description of dark grey estuarine muds and clays. The presence of potential acid sulfate soils can be confirmed via a field oxidation test, with high stored acidity confirmed by a violent oxidation reaction, although this is not typically provided in the eSPADE database. The location of all relevant eSPADE soil profiles within the study area is presented in Figure D-1, and a summary of the soil profile data, including approximate surface elevation and minimum profile pH (within the tidal range), is provided in Table D-1.

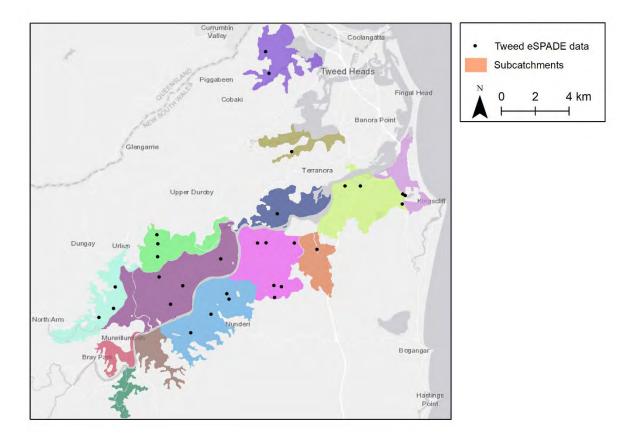


Figure D-1: Location of applicable eSPADE soil profiles in the study region

Table D-1: Summary of relevant eSPADE profiles (DPIE, 2020)

*Surface elevation extract from 1 m LiDAR.

** Minimum pH in this table is within the range of MLWS to 1 m AHD. Lower pH may have been observed elsewhere in the profile.

eSPADE Profile ID	Subcatchment	Easting	Northing	Surface Elevation (m AHD)*	Total Profile Depth (m)	Minimum pH**
9441	Bilambil/Terranora	548305	6877136	1.3	1.5	5.5
19891	Cobaki	546972	6881739	0.9	1.5	4
19892	Cobaki	546772	6883020	0.2	1.6	5
19872	Condong	544488	6868757	0.8	3.1	3.5
19874	Condong	543546	6867541	1.2	2.9	3.5
19875	Condong	542352	6866459	1.4	3.1	3.5
9513	Condong	544605	6868437	0.5	1.1	4.5
19881	Dulguigan	540422	6871706	0.6	3.1	4
9506	Dulguigan	540405	6870937	1.2	1	5
9510	Dulguigan	540355	6872237	0.7	1	4
96222	East Chinderah	555000	6874550	0.1	1.5	4.5
19880	Kynnumboon	537906	6869160	0.8	2.5	4
19896	Kynnumboon	536945	6867356	2.4	1.9	6
9505	Kynnumboon	537798	6867889	1.6	1.2	4.5
19890	North Tumbulgum	547457	6873471	0.8	2.35	5
90501	Stotts Creek	549791	6871371	0.3	1.2	5.5
19873	Tumbulgum/Eviron	547694	6869174	0.3	2.5	4
19876	Tumbulgum/Eviron	546295	6871744	2.2	2.6	7
19877	Tumbulgum/Eviron	546794	6871764	0.7	3.2	4.5
19878	Tumbulgum/Eviron	548461	6871743	0.8	3.1	3.5
9514	Tumbulgum/Eviron	547305	6868537	0.8	0.9	6
9515	Tumbulgum/Eviron	547254	6869237	0.5	1.1	4.5
19879	Tygalgah	541161	6868132	1.1	2.8	4
19882	Tygalgah	540481	6869745	1.2	2.7	5
19883	Tygalgah	544121	6870808	1.4	3	5.5
19884	Tygalgah	541880	6869226	0.8	2.6	4
19886	West Chinderah	551457	6875109	0.9	1.8	4
19887	West Chinderah	554824	6874041	1.2	1.85	4
96226	West Chinderah	552350	6875100	1.4	1.2	4.5
9403	West Chinderah	554855	6874636	1.8	1.2	8

D2.2 Other literature

Published and grey literature were investigated for other soil profiles within the Tweed River floodplain, which included data from journal papers (Smith et al. (2003), Kinsela (2007) and Macdonald et al. (2004)) and environmental assessments made to support developments (Gilbert and Sutherland (2009) and JGA (2005)). Locations of the profiles are shown in Figure D-2. Only literature that provided information on pH at depth and suitable location information was included. Where no surface elevation data was provided, it was extracted from a 1 m DEM of the Tweed floodplain. The location of all relevant soil profiles from the literature within the study area is presented in Figure D-2 and a summary of the

soil profile data, including approximate surface elevation and minimum profile pH (within the tidal range), is provided in Table D-2.

In the case of Smith et al. (2003) and Macdonald et al. (2004), the literature provided a representative profile across the numerous locations sampled in each study. In these cases, a representative elevation was assigned.

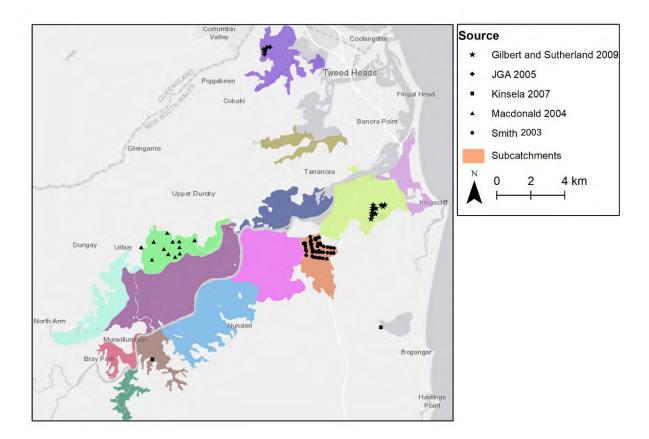


Figure D-2: Location of applicable soil profiles from literature in the study region

Profile	Subcatchment	Easting	Northing	Surface Elevation (m AHD)	Total Profile Depth (m)	Minimum pH
JBA_2009_TP1	Cobaki	546906	6883362	3.0	5.5	7.7
JBA_2009_TP2	Cobaki	546728	6883343	1.7	5.5	4.9
JBA_2009_TP3	Cobaki	546660	6883255	1.5	5.5	5.0
JBA_2009_TP4	Cobaki	546530	6883218	3.5	5.5	4.6
JBA_2009_TP5	Cobaki	546593	6883082	2.7	5.5	5.3
JBA_2009_TP6	Cobaki	546579	6882933	0.9	4.5	4.6
Macdonald_2004 Representative Profile	Dulguigan	NA	NA	1.0	2	3.0
Kinsela_2007	South Murwillumbah	539982	6864979	0.8	2.8	2.9
Smith_2003 Representative Profile	Stotts Creek	NA	NA	0.3	1.2	3.5
Gilbert_et_al_2005_BH1	West Chinderah	553665	6874095	1.1	17.5	5.2
Gilbert_et_al_2005_BH2	West Chinderah	552979	6874078	-0.1	15.5	5.5
Gilbert_et_al_2005_BH3	West Chinderah	553450	6874080	0.5	16	4.4
Gilbert_et_al_2005_BH4	West Chinderah	552952	6873913	0.6	15	6.3
Gilbert_et_al_2005_BH5	West Chinderah	552940	6873773	0.5	15	5.1
Gilbert_et_al_2005_BH6	West Chinderah	552907	6873608	0.7	15	4.9
Gilbert_et_al_2005_BH7	West Chinderah	552888	6873461	0.6	15.4	6.3
Gilbert_et_al_2005_BH8	West Chinderah	552850	6873258	0.5	13.5	6.7
Gilbert_et_al_2005_BH10	West Chinderah	553150	6873885	0.7	5.5	5.1

Table D-2: Summary of relevant soil profiles from literature

D3 Field campaign

Following a data collation and data gaps analysis, a targeted field campaign was undertaken to collect data in areas with limited information. Information on field data collection methods can be found in Appendix A of the Methods report (Rayner et al., 2023). The location of an additional 33 soils profiles collected for this study is shown in Figure D-3, and a summary of the soil profile data, including approximate surface elevation and minimum profile pH (within the tidal range), is provided in Table D-3. Detailed data logs of each of soil profile is provided in Appendix L.

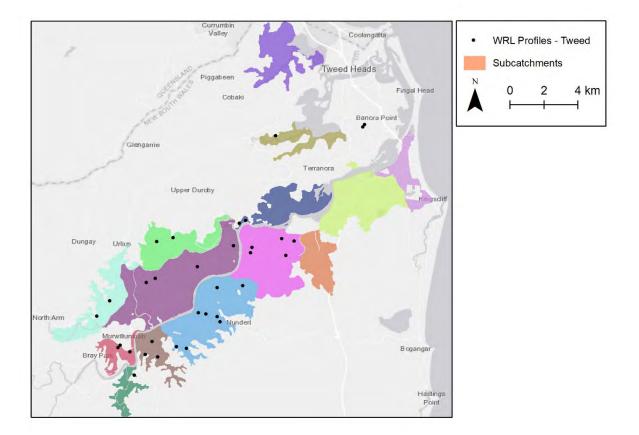


Figure D-3: Location of soil profiles from WRL field investigations

Profile	Subcatchment	Easting	Northing	Surface Elevation (m AHD)	Total Profile Depth (m)	Minimum pH
TW_20_P	Bilambil/Terranora	552417	6878458	0.37	2.2	4.8
TW_22_A	Bilambil/Terranora	552525	6878599	-0.01	1.65	3.6
TW_01_A	Bilambil/Terranora	547287	6877933	0.78	2.15	5.3
TW_10_A	Commercial Road	538148	6865633	1.54	2.05	6.4
TW_11_P	Commercial Road	538013	6865487	1.36	2.85	6.1
TW_32_A	Commercial Road	538725	6865243	0.96	2.45	4.9
TW_43_A	Condong	542750	6867529	2.53	2.5	6.3
TW_45_P	Condong	543189	6867459	1.19	2.25	4.4
TW_38_A	Condong	545359	6869127	0.83	2.4	3.9
TW_37_A	Condong	543850	6867300	0.98	2	4.3
TW_13_P	Condong	543856	6869002	0.78	1.85	4.4
TW_37_P	Condong	544021	6867004	0.76	2	3.8
TW_35_P	Condong	541453	6865542	0.91	2.6	4.4
TW_13_A	Condong	542040	6865446	1.03	2.3	4.8
TW_26_A	Dulguigan	540293	6871721	0.74	2.5	4.1
TP_26_S	Dulguigan	541256	6871951	0.89	2.1	3.8
TP_33_S	Dunbible Creek	538983	6863862	2.35	1.9	6.2
TW_07_A	Kynnumboon	537527	6868236	1.23	2.7	4.3
TW_31_P	Kynnumboon	536773	6867338	0.91	2.1	4.3
TW_03_A	North Tumbulgum	545523	6872959	0.56	2.1	5.5
TW_04_P	North Tumbulgum	545156	6872789	0.58	2.42	3.9
TW_36_A	South Murwillumbah	539625	6865082	1.31	2.8	3.8
TW_12_A	South Murwillumbah	540028	6865837	1.56	2.3	6.3
TW_36_P	South Murwillumbah	540355	6864934	0.47	2.1	3.5
TW_14_P	Tumbulgum/Eviron	547888	6870903	0.34	1.65	4.6
TW_43_P	Tumbulgum/Eviron	548377	6871745	0.24	1	4.6
TW_42_A	Tumbulgum/Eviron	547652	6871886	0.53	1.85	4.8
TW_44_A	Tumbulgum/Eviron	545813	6871054	1.09	1.85	5.7
TW_46_P	Tumbulgum/Eviron	545906	6871367	0.63	1.86	5
TW_05_P	Tygalgah	544820	6871473	0.60	2.3	4.5
TW_27_A	Tygalgah	540216	6869551	0.84	2.05	4.9
TW_27_P	Tygalgah	539681	6869309	0.91	2	4.5
TW_05_A	Tygalgah	542691	6870240	0.42	2.1	4.2

Table D-3: Summary of relevant soil profiles from WRL field investigations

D4 Summary of soil acidity for prioritisation

Section 4 of the Methods report (Rayner et al., 2023) summarises the method for prioritising subcatchments for acid generation. There are two key pieces of information that are used to determine the pH factor used in the priority assessment that can be derived from the ASS data:

- Depth averaged hydrogen ion concentration (related to soil pH); and
- The contributing depth.

All else being equal, a higher hydrogen concentration (i.e. more acidic) and larger contributing depth is an indicator of a greater potential for acid generation and export. More information on how these are calculated can be found in Section 4 of the Methods report (Rayner et al., 2023). These are multiplied together to get the pH factor which forms part of the final prioritisation. Table D-4 summarises the information per subcatchment in the Tweed River floodplain.

Subcatchment	Depth averaged H+ concentration (µmol/L)	Contributing depth (m)	pH factor	Number of soil profiles available
Bilambil/Terranora	12.1	1.2	14.5	4
Cobaki	13.1	1.3	17.0	8
Commercial Road	1.1	1.3	1.5	3
Condong	78.4	1.3	101.9	12
Dulguigan	119.7	1.3	155.7	6*
Dunbible Creek	0.6	1.3	0.7	1
East Chinderah	15.0	0.4	6.0	1
Kynnumboon	39.3	1.3	51.1	5
North Tumbulgum	19.4	1.1	21.3	3
South Murwillumbah	146.6	1.3	190.5	4
Stotts Creek	96.3	0.6	57.8	2*
Tumbulgum/Eviron	20.4	1.3	26.5	11
Tygalgah	28.6	1.3	37.2	8
West Chinderah	20.0	1.3	26.0	15

Table D-4: Summary of information from soil acidity information

* Stotts Creek and Dulguigan include representative profile from Smith et al. (2003) and Macdonald et al. (2004), which incorporated data from a much larger number of profiles.

D5 Data confidence

As shown in Table D-4, the number of profiles in each catchment varies quite significantly. There are two catchments in particular that only have one profile each (Dunbible Creek and East Chinderah). Confidence in this data is therefore limited, so information in literature on ASS or water quality has been consulted to provide greater certainty in the pH factor.

Both of these catchments with limited profiles have low pH factors (0.7 and 6.0 for Dunbible Creek and East Chinderah respectively). Neither of these areas were identified by Tulau (1999) as ASS hotspots on the Tweed River. Hydrosphere Consulting (2017) also documented a water quality monitoring

program that was undertaken by Tweed Shire Council over a five (5) year program between 2012 – 2016, including a long term monitoring site at the discharge point of Dunbible Creek and another near the Pacific Highway bridge of the Tweed River (near East Chinderah). At each of these sites, pH complies with water quality guidelines 98% and 94% of the time respectively (compared to 80% or less of the time for sites on the Rous River). Neither Hydrosphere Consulting (2017) or Tulau (1999) have identified acidity as a major issue at either Dunbible Creek or East Chinderah. As there is no evidence to the contrary that these two (2) catchments should have a low pH factor, no adjustments have been made to account for lower confidence at these two (2) sites.

E1 Preamble

This section provides an overview of the data used to develop the elevation thresholds for the prioritisation of blackwater generation potential for floodplain subcatchments in the Tweed River. The water level analysis undertaken is described in detail in Section 5 of the Methods report (Rayner et al., 2023).

E2 Water level gauges

There are seven (7) water level gauges operated by NSW DPIE Manly Hydraulics Laboratory (MHL) in the Tweed River estuary that have been used for the analysis of critical thresholds for blackwater generation. The location of the gauges is shown in Figure E-1 and detailed in Table E-1. Water level data has been provided on a 15-minute time step throughout each monitoring period, although intermittent data gaps do occur.

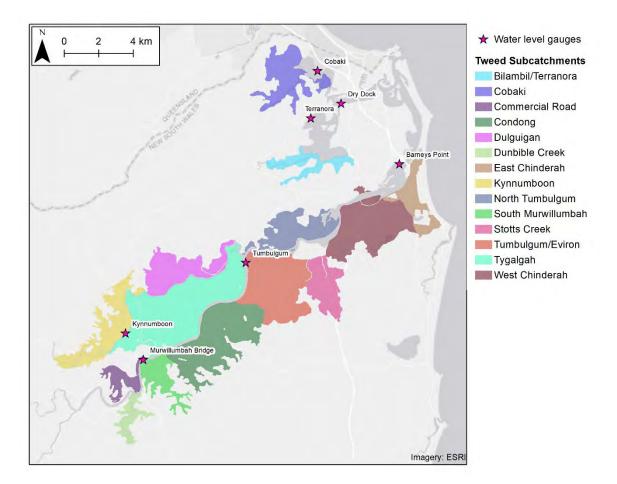


Figure E-1: Location of water level gauges used for blackwater elevation threshold

Station	Chainage (km from entrance/ downstream confluence)	Length of record (years)*	Mean High Water (MHW) (m AHD)
Barneys Point	7.3 (Tweed River)	30.4	0.4
Cobaki	Not on main river	31.2	0.4
Terranora	Not on main river	30.8	0.4
Tumbulgum	20.0 (Tweed River) 0 (Rous River)	32.2	0.4
North Murwillumbah	29.6 (Tweed River)	27.8	0.4
Kynnumboon	12.8 (Rous River)	26.8	0.5

Table E-1: Details of water level gauges

* Excluding data gaps of greater than 6 hours.

Water level time series data at each gauge was analysed to establish a range of levels which can be applied to each floodplain subcatchment whereby the potential for prolonged inundation can be assessed. This is related to floodplain topography and land use to prioritise blackwater generation across the floodplain. The analysis of the water level time series data is undertaken 25 times, to account for events that happen on average every 1, 2, 3, 4 and 5 years as well as events that result in inundation for 1, 2, 3, 4 and 5 days at a time. As a result, there can be up to 25 unique elevations at each gauge (noting that the minimum allowable level is mean high water (MHW)). The range of levels from this analysis, as well as the median and mean levels are shown in Table E-2.

	Minimum level	Median level	Mean level	Maximum level
Station	(m AHD)	(m AHD)	(m AHD)	(m AHD)
Barneys Point	0.4	0.4	0.6	1.3
Cobaki	0.4	0.4	0.4	0.7
Terranora	0.4	0.4	0.4	0.7
Tumbulgum	0.4	0.9	1.1	2.6
North Murwillumbah	0.4	0.7	1.0	2.8
Kynnumboon	0.5	1.4	1.6	3.8

Table E-2: Representative water level elevations at each water level gauge

E3 Subcatchment elevation thresholds

The subcatchments of the Tweed River floodplain are shown in Figure E-1. For some of these catchments, the primary discharge point at the main river is sufficiently close to one of the water level gauges that the gauge well represents the downstream boundary condition. For other subcatchments, the main discharge points are located away from the available water level gauges. In these cases, the chainage along the river of the major discharge point has been measured, and the critical elevations have been interpolated between gauges. The water level stations used for each subcatchment are shown in Table E-3, as well as the interpolation used where required.

The range of levels, as well as the median and mean levels, at each subcatchment are shown in Table E-4. Figure E-2 shows spatially the area covered by the median elevation thresholds in each subcatchment.

Subcatchment	Water level station(s) used		
Bilambil-Terranora	Terranora		
Cobaki	Cobaki		
East Chinderah	0.91 x Barneys Point + 0.09 x Tumbulgum		
West Chinderah	0.76 x Barneys Point + 0.24 x Tumbulgum		
Stotts Creek	0.41 x Barneys Point + 0.59 x Tumbulgum		
North Tumbulgum	0.32 x Barneys Point + 0.68 x Tumbulgum		
Tumbulgum-Eviron	0.22 x Barneys Point + 0.78 x Tumbulgum		
Condong	0.69 x Tumbulgum + 0.31 x North Murwillumbah		
Dulguigan	0.78 x Tumbulgum + 0.22 x Kynnumboon		
Tygalgah	0.73 x Tumbulgum + 0.27 x Kynnumboon		
Kynnumboon	Kynnumboon		
South Murwillumbah	North Murwillumbah		
Dunbible Creek	North Murwillumbah		
Commercial Road	Road North Murwillumbah		

Table E-3: Water level stations and subcatchments

Table E-4: Representative elevations at each subcatchment in the Tweed River floodplain

Subcatchment	Minimum level (m AHD)	Median level (m AHD)	Mean level (m AHD)	Maximum level (m AHD)
Bilambil-Terranora	0.4	0.4	0.4	0.7
Cobaki	0.4	0.4	0.4	0.7
East Chinderah	0.4	0.4	0.6	1.4
West Chinderah	0.4	0.5	0.7	1.6
Stotts Creek	0.4	0.7	0.9	2.1
North Tumbulgum	0.4	0.7	0.9	2.2
Tumbulgum-Eviron	0.4	0.8	1.0	2.3
Condong	0.4	0.8	1.0	2.7
Dulguigan	0.4	1.0	1.2	2.9
Tygalgah	0.4	1.0	1.2	2.9
Kynnumboon	0.5	1.4	1.6	3.8
South Murwillumbah	0.4	0.7	1.0	2.8
Dunbible Creek	0.4	0.7	1.0	2.8
Commercial Road	0.4	0.7	1.0	2.8

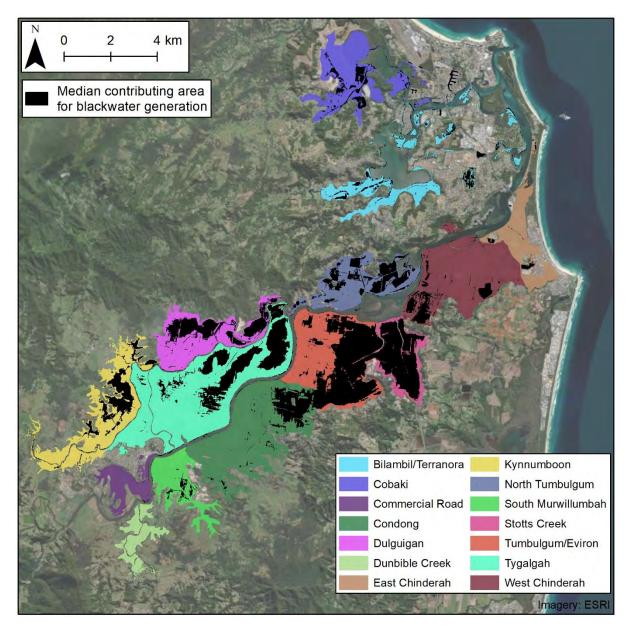


Figure E-2: Areas in the Tweed River floodplain below the median elevation threshold

Appendix F Floodplain infrastructure

F1 Preamble

A range of floodplain infrastructure exists across the Tweed River floodplain for the purpose of drainage and inundation protection (tidal and flooding). Included within this infrastructure is a number of structures that have been modified to improve water quality and aquatic connectivity across the floodplain. Floodplain infrastructure includes:

- Floodgates;
- Culverts or pipes;
- Weirs; and
- Levees.

The following section provides information on floodplain infrastructure for the Tweed River floodplain. This includes results of a data gaps analysis, an assessment of data for critical floodplain infrastructure and details of infrastructure condition and maintenance programs. Data tables containing information on floodplain infrastructure are provided.

F2 Data gaps analysis

F2.1 Existing infrastructure data

Prior to the data collection program undertaken as part of this study, the existing data available for floodplain infrastructure was collated. Floodplain infrastructure data was reviewed from the following sources and has been summarised in Table F-1.

- Floodgate and levee data provided by Tweed Shire Council (TSC);
- Flood mitigation work-as-executed drawings (Young, 1979);
- Bray Park Weir overtopping investigation (WRL, 2017); and
- Levee and structure data obtained during flood model development (Wallace et al., 2009).

Source	Description
TSC – GIS	GIS shapefiles containing location and access information for floodgates and levees managed by TSC.
TSC - annotated photos	Photos of floodgates with headwall elevation and in some instances dimension information annotated to a reduced level of an unspecified datum.
TSC - spreadsheets	Spreadsheets containing details on floodgate dimensions and elevation measurements of floodgate headwalls to a reduced level of an unspecified datum.
Young (1979)	Work as executed drawings for flood mitigation floodgates and levees including dimension, invert and crest elevation information referenced to Standard Datum. Note, field inspections indicated that a number of floodgate structures were different than what was specified in the 1979 design drawings. Corrections from Standard Datum to Australian Height Datum have been applied where no other data was available.
WRL (2017)	A study investigating the overtopping of Bray Park Weir that states the crest elevation as provided by TSC.
Wallace et al. (2009)	A TUFLOW model was developed for the purpose of flood modelling of the Tweed River floodplain and included information on levee crest elevations and some culvert inverts. Data for the flood model was collated from design drawings and field investigations.

Table F-1: Description of existing data sources

Across the Tweed River floodplain existing data for floodplain infrastructure is generally limited to location information with negligible data being available for invert, obvert or crest elevation measurements. The exception to this is for levees whereby detailed data collected for flood modelling along with LiDAR observations means that crest elevation data is well represented (information specific to levees has been addressed in Section F3.2). Where data was in Standard Datum, conversion to Australian Height Datum has been completed. This process included converting data from feet to metres and then subtracting a 0.132 m correction. This correction value has been calculated by the NSW Department of Finance and Services (2012) for the closest available survey mark (PM7892).

During the data gaps analysis, aerial imagery and waterways spatial datasets were used to determine possible locations for end of system infrastructure that was not included in the existing infrastructure data sources. Verification of the existence of these structures was undertaken, where possible, during the data collection campaign. Where inspection of these structures was not possible due to access restrictions, the structure has been marked as "unknown". In these circumstances the existence of the structure and structure geometry requires confirmation.

A summary table of existing structure data is provided in Section F6. Note that during the gaps analysis only data for end of system structures such as floodgates that discharge directly to the Tweed River estuary was assessed. Subsequently, there may be existing data available for structures that are located upstream of end of system infrastructure which do not directly discharge to the Tweed River estuary.

F2.2 Data collection

Field investigations were completed to obtain invert and dimension data for floodplain infrastructure within the Tweed River floodplain. Initially WRL completed opportunistic surveys of easily accessible end of system structures. Abbott and Macro Land and Engineering Surveyors (Abbott & Macro LES) then collected further end of system structure data. Focus of the investigations was on collecting data for primary end of system floodgate structures, however, data was also collected opportunistically for other floodplain infrastructure. Figure F-1 summarises the data available for floodplain structures. Summary tables of all structure data measured during the field investigations is provided in Section F6.

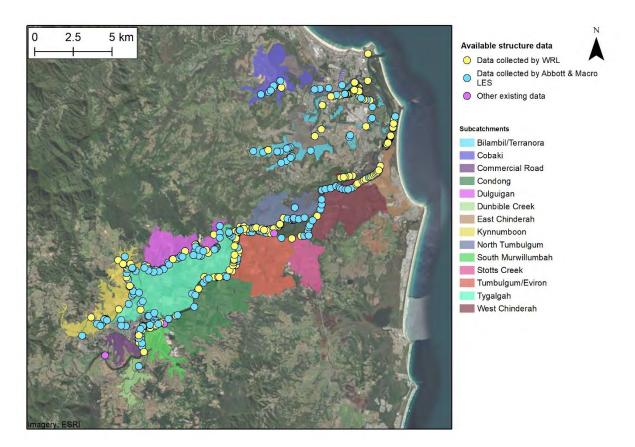


Figure F-1: Summary of structures where data available for the Tweed River floodplain

F3 Assessment of critical floodplain infrastructure

F3.1 End of system structures

A floodplain infrastructure assessment was completed with particular focus given to end of system (EOS) structures which act as barriers to prevent the upstream flow of tidal waters and limit the risk of backwater flooding from the river. Examples of EOS structures include weirs or one-way floodgates which work alongside levee banks to facilitate drainage while preventing inundation of the floodplain, often where agricultural land use practices are undertaken. These EOS structures have been separated into two categories:

- 1. Primary EOS structures: floodplain infrastructure that plays a significant role in draining the upstream catchment. An example of a primary EOS structure is the large floodgates on Condong Creek.
- Secondary EOS structures: floodplain infrastructure that provides drainage for small floodplain areas which are insignificant when compared to the total catchment drainage. An example of a secondary EOS structure would be a 300 mm diameter floodgate draining local catchment runoff on a paddock scale.

The location and condition of individual EOS structures have management implications due to their operation as drainage and flood mitigation devices. For this reason, EOS structures have been carefully considered during the development of management options. Furthermore, EOS structures are vulnerable to sea level rise as a result of climate change, resulting in reduced drainage potential. A detailed vulnerability assessment has been completed for EOS floodgate structures (see Section 7). Figure F-2 provides the locations, category and survey status for the 369 EOS structures which have been identified within the Tweed River floodplain.

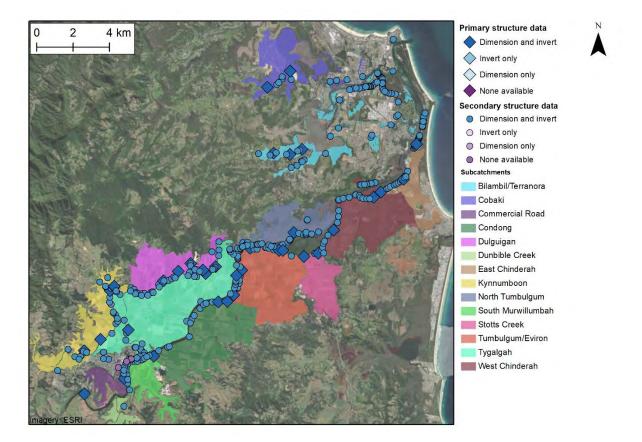


Figure F-2: Summary of data available for end of system structures of the Tweed River floodplain

F3.2 Levees

Levee structures are generally constructed to protect the floodplain from extreme flood events. They can also protect the floodplain from inundation due to high tidal levels. Within the Tweed River floodplain there are two sets of levee structures located at Tweed Heads South and Murwillumbah designed to protect urban areas from extreme flood events. The Tweed Heads South levee system

was initially designed to protect against a 5% annual exceedance probability (AEP) flood event, however, flood modelling indicated that this was not the case and levees would begin to overtop with a flood of this level (Wallace et al., 2009). Flood modelling showed that the levee structures located at Murwillumbah would offer protection from a 5% AEP flood event and would begin to overtop during a 1% AEP flood event (Wallace et al., 2009). Figure F-3 shows the locations of flood mitigation levees across the Tweed River floodplain. All levees are actively managed by Tweed Shire Council with priority given to levees offering protection for urban areas.

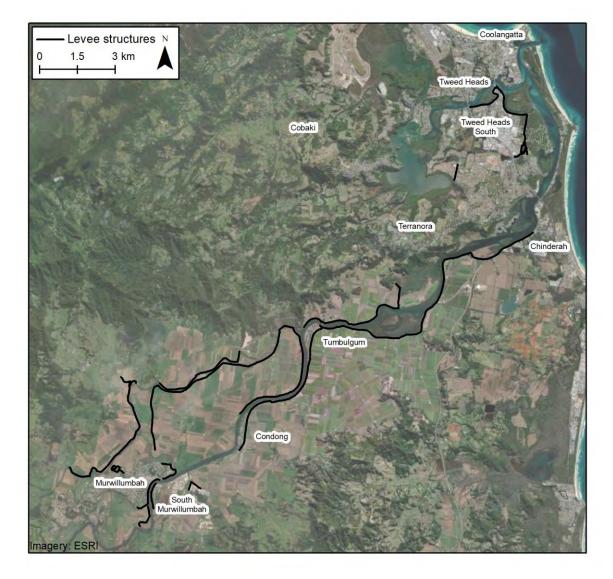


Figure F-3: Location of flood mitigation levee structures on the Tweed River floodplain managed by Tweed Shire Council

F4 Infrastructure tenure and maintenance

F4.1 Infrastructure tenure

Information on the tenure of EOS structures across the Tweed River floodplain is presented in Figure F-4.

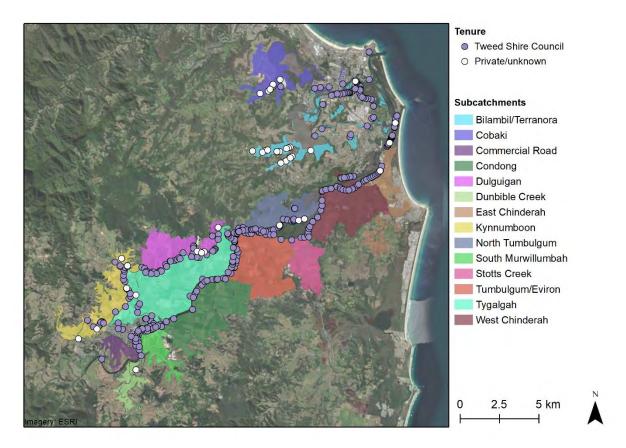


Figure F-4: Tenure of end of system structures on the Tweed River floodplain

F4.2 Maintenance schedule

Tweed Shire Council has a drainage asset management plan for ongoing maintenance of floodplain infrastructure (TSC, 2011). This plan outlines:

- The hierarchy for infrastructure including the strategic level of service for maintenance;
- The current and projected future demand for management of drainage infrastructure;
- A lifecycle management plan for drainage infrastructure;
- A summary of financial requirements and allocation for drainage infrastructure management;
- Asset management practices; and
- A plan for continued improvement of the drainage asset management plan.

Ongoing maintenance of floodplain infrastructure is important in ensuring that the way structures affect water quality and connectivity across the floodplain remains as per their design specifications. The level of maintenance floodplain infrastructure receives directly impacts the management option recommendations for the subcatchment where the structures are located. It has been assumed that

for structures where the tenure was identified as private or unknown that routine maintenance is completed on an as required basis by the landholder.

F4.3 Condition assessment

During the fieldwork program, structures which were inspected were also assessed for condition. Floodgate structures were only assessed when access to the downstream (gated) side of the structure was available and the structure was above the water level. The condition assessment was completed using an approach similar to Walsh et al. (2012) as outlined in Table F-2. Where data was available, the structure condition has been considered during the development of management options.

Condition	Description
Good	The structure is in good working order. For floodgates, the seals work well. The structure does not require any maintenance in the near future.
Fair	The structure is functioning well however it is starting to become damaged. Issues such as rust or broken seals (for floodgates) are starting to become evident and affect the structure's performance. For floodgates some vegetation, oysters or debris may be partially blocking the gate or preventing it from closing. The structure will require some maintenance in the near future.
Poor	The structure is no longer functioning well. For floodgates, the flaps no longer close properly or have holes. There may be extensive rust or concrete cancer in the structure. Sections of the culvert may have collapsed. For floodgates, the flap may be blocked or obstructed from opening. The structure requires maintenance to allow it to function correctly.
Other	The structure is broken and irreparable or has been removed.

Table F-2: Condition assessment criteria

F5 Infrastructure terminology

The following section provides a number of figures which describe common types of floodplain infrastructure used to control water movement across the floodplain. These figures include descriptions for common terminology used to describe infrastructure.

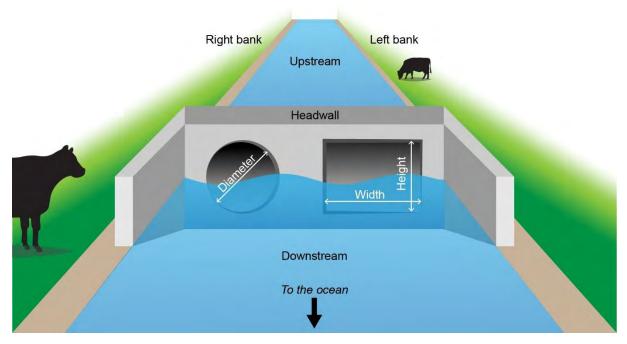


Figure F-5: Example of culverts controlling water in an agricultural drain

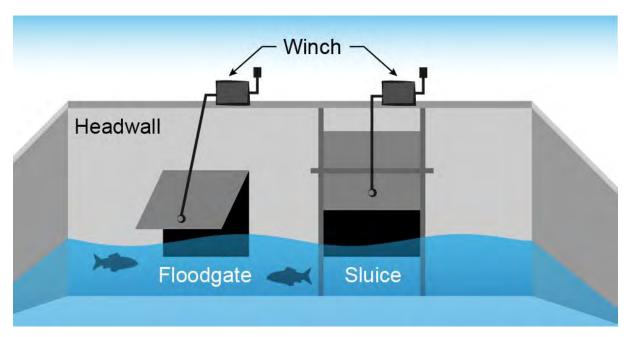


Figure F-6: Example of floodgate and sluice structures which can be fitted to culverts to control flow using a winch

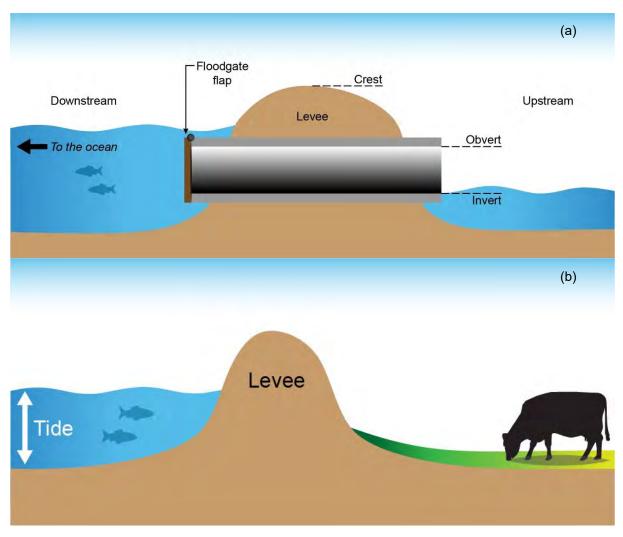


Figure F-7: Example of (a) a floodgate structure ensuring water levels upstream of a levee remain at the low tide level and (b) a levee preventing tidal inundation of the floodplain

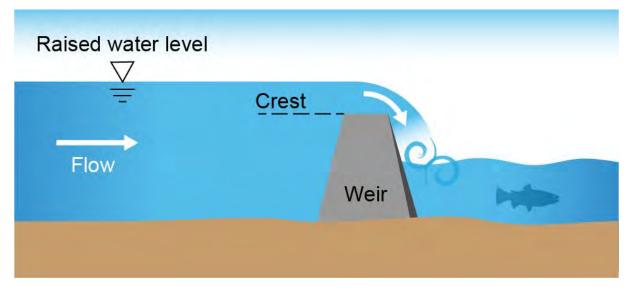


Figure F-8: Example of a weir ensuring a raised water level on the upstream side

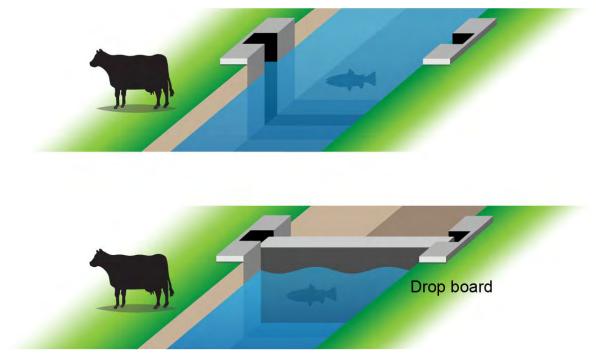


Figure F-9: Example of a drop board structure which can be used to control water levels and prevent inundation

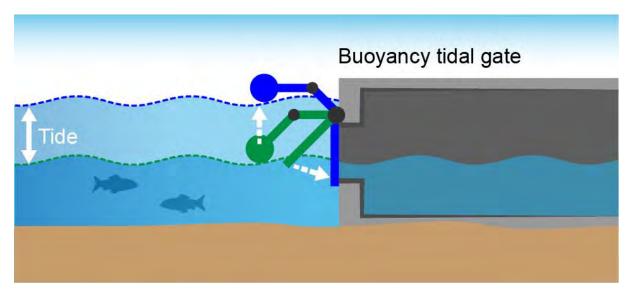


Figure F-10: Example of a buoyancy tidal gate that lets a controlled level of tidal water upstream of the structure (green) before closing due to a buoyancy mechanism and preventing further water ingress (blue)

F6 Floodplain infrastructure data tables

The following section includes:

- 1. A summary table for structures surveyed for this current project (Table F-3);
- 2. A summary table for structures based on surveys from Abbott and Macro in 2021 (Table F-4); and
- 3. A summary table for structures that were not surveyed (Table F-5).

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
1	30/09/2019 15:02	Floodgate	1	1.5			538916	6865608		-0.29	Good	Secondary	Tweed Shire Council
1a	30/09/2019 15:32	Floodgate	1	0.3			538914	6865680		1.54	Fair	Secondary	Tweed Shire Council
1b	30/09/2019 15:38	Floodgate	1	0.3			538917	6865861		1.76		Secondary	Tweed Shire Council
2	27/08/2019 0:00	Floodgate	4		2.4	1.8	538926	6865406	-0.09		Good	Primary	Tweed Shire Council
3 lower	30/09/2019 15:59	Floodgate	2	1.8			538913	6865931		-0.15	Fair	Secondary	Tweed Shire Council
3 upper	30/09/2019 15:59	Floodgate	2	1.2			538913	6865931		2.31	Fair	Secondary	Tweed Shire Council
4	30/09/2019 16:40	Floodgate	1	1.5			539030	6866274		-0.54		Secondary	Tweed Shire Council
4a	30/09/2019 16:46	Floodgate	1	0.3			539026	6866261		2.85	Good	Secondary	Tweed Shire Council
6a	30/09/2019 17:05	Floodgate	1	0.3			539192	6866438		5.33		Secondary	Tweed Shire Council
7	30/09/2019 17:01	Floodgate	1	1.35			539248	6866476		0.74	Fair	Secondary	Tweed Shire Council
8	1/10/2019 10:39	Floodgate	2	0.9			539272	6866483		0.22		Secondary	Tweed Shire Council
10	1/10/2019 9:58	Floodgate	2		1.8	1.95	539260	6864785	-0.06		Good	Primary	Tweed Shire Council
16	24/10/2019 14:41	Floodgate	1	0.475			539129	6866213		0.03	Good	Secondary	Tweed Shire Council
17	1/10/2019 10:38	Floodgate	1	0.6			539225	6866327		-0.03	Good	Secondary	Tweed Shire Council
17a	1/10/2019 10:55	Floodgate	1	0.6			539451	6866349		0.59		Secondary	Tweed Shire Council
17b	1/10/2019 11:06	Floodgate	1	0.6			539648	6866351		2.28	Good	Secondary	Tweed Shire Council
17f	1/10/2019 11:36	Floodgate	1	0.6			540031	6866515		2.56	Good	Secondary	Tweed Shire Council

Table F-3: Summary of structures where data was collected during this current project

Tweed River Floodplain Prioritisation Study, WRL TR 2020/04, June 2023

Comment

Dimensions are approximate. Buoyancy tidal gate on floodgate flap second from the right. Two of four floodgates. Floodgates are arranged in a grid pattern with the two bottom floodgates being larger. Inverts are approximate. Top floodgates are attached to a pump on the upstream side. Two of four floodgates. Floodgates are arranged in a grid pattern with the two bottom floodgates being larger. Inverts are approximate. Top floodgates are attached to a pump on the upstream side. There was poor GPS accuracy when measuring the invert. The downstream invert was estimated based on height above the water level (estimated as 0.25 m). Culvert dimensions estimated from viewing culvert from opposite side of the river. Culvert is under a road. The right-hand floodgate has a winch. Southbank near Murwillumbah. Culvert is near a bridge. Invert is approximate. Could not find the upstream side of the culvert. Invert and dimensions are approximate.

Could not find the upstream side of the culvert.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
17g	1/10/2019 11:52	Floodgate	1	0.45			540248	6866646		2.88	Good	Secondary	Tweed Shire Council
17h	1/10/2019 12:00	Floodgate	1	0.375			540303	6866675		2.75	Fair	Secondary	Tweed Shire Council
17 i	1/10/2019 12:06	Floodgate	1	0.45			540423	6866735		3.25		Secondary	Tweed Shire Council
17k	1/10/2019 12:08	Floodgate	1	0.3			540436	6866745		2.21		Secondary	Tweed Shire Council
17n	1/10/2019 12:59	Floodgate	1	0.45			541318	6867119		2.67		Secondary	Tweed Shire Council
27b	1/10/2019 13:13	Floodgate	2	0.375			542770	6868866		2.78	Fair	Secondary	Tweed Shire Council
29	1/10/2019 13:28	Floodgate	3	1.5			543769	6869590	-0.58		Good	Secondary	Tweed Shire Council
30	1/10/2019 13:41	Floodgate	3	1.5			544035	6869601	-0.17		Poor	Primary	Tweed Shire Council
30c	1/10/2019 13:35	Floodgate	1	0.45			543965	6869615		1.65		Secondary	Tweed Shire Council
31	1/10/2019 13:46	Floodgate	2		2.4	1.8	544101	6869597	-0.55		Good	Primary	Tweed Shire Council
31 buoyancy	1/10/2019 13:50	Floodgate			0.8	0.8	544104	6869623		-0.57	Good		Tweed Shire Council
33	25/02/2020 9:24	Floodgate	4	1.8			544946	6870005		-0.76	Good	Primary	Tweed Shire Council
34 left	1/10/2019 14:15	Floodgate	1		0.45	0.6	545160	6870371		0.14	Poor	Secondary	Tweed Shire Council
34 right	1/10/2019 14:10	Floodgate	1	1.5			545160	6870373		-0.34	Good	Secondary	Tweed Shire Council
34a	1/10/2019 14:19	Floodgate	1	0.45			545172	6870403		2.19	Good	Secondary	Tweed Shire Council
37	1/10/2019 14:56	Floodgate	2	1.5			545327	6871075		-0.35	Fair	Secondary	Tweed Shire Council
38	1/10/2019 15:18	Floodgate	1	1.5			545399	6871357	-1.15			Primary	Tweed Shire Council
39	1/10/2019 15:18	Floodgate	1	0.375			545309	6871539				Secondary	Tweed Shire Council
39a	27/08/2019 0:00	Floodgate	1	0.6			545179	6871966		0.01	Fair	Secondary	Tweed Shire Council
39b	1/10/2019 16:00	Floodgate	1	0.375			545166	6872172		-0.03		Secondary	Tweed Shire Council
39c	1/10/2019 16:04	Floodgate	1	0.6			545178	6872241		-0.40		Secondary	Tweed Shire Council
39d	1/10/2019 16:10	Floodgate	1	0.375			545258	6872434		0.46		Secondary	Tweed Shire Council
39e	1/10/2019 16:13	Floodgate	1	0.375			545304	6872510		0.47	Good	Secondary	Tweed Shire Council
39f	1/10/2019 16:15	Floodgate	1	0.9			545331	6872550		-0.70	Poor	Secondary	Tweed Shire Council
39g	1/10/2019 16:15	Floodgate	1	0.375			545430	6872623			Fair	Secondary	Tweed Shire Council
39h	1/10/2019 16:15	Floodgate	1	0.3								Secondary	Tweed Shire Council

Comment

Labelled as 17x in Tweed Shire Council GIS layer. The downstream side of the culvert was blocked with trees inside. The downstream side of the culvert was almost completely blocked. Buoyance tidal gate located on the right flap. Buoyancy gate for structure 31. Buoyance tidal gate on second gate from the right. One of two culverts. Small culvert with gate on the left side of structure 34. Invert and dimensions approximate. One of two culverts. Partially wedged open. There are mangroves on the downstream side of the culvert. Invert not measured due to poor GPS signal. Deep drain, upstream side is dry. Invert measurement is approximate. Culvert is very blocked and infilled with silt. It is unlikely to function. Invert not measured due to poor GPS signal. Floodgate is within the tidal range. Invert not measured due to poor GPS signal. Floodgate is within the tidal range. Actual easting

and northing unknown.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
39i	1/10/2019 16:30	Floodgate	1	0.3			545578	6872713		-0.05	Good	Secondary	Tweed Shire Council
39j	1/10/2019 16:37	Floodgate	1	0.6			545640	6872728		-0.33	Good	Secondary	Tweed Shire Council
39k	1/10/2019 16:39	Floodgate	1	0.45			545696	6872726		0.16	Good	Secondary	Tweed Shire Council
39s	1/10/2019 15:38	Floodgate	1	0.375			545172	6872041		0.66	Good	Secondary	Tweed Shire Council
39w	1/10/2019 15:42	Floodgate	1	0.375			545170	6872126		0.93	Good	Secondary	Tweed Shire Council
40	1/10/2019 9:02	Floodgate	1	0.3			544759	6870064	0.59		Good	Secondary	Tweed Shire Council
41	1/10/2019 8:55	Floodgate	1	0.6			544978	6870388	0.76		Good	Secondary	Tweed Shire Council
42	1/10/2019 8:49	Floodgate	1	0.375			545045	6870566		0.29	Good	Secondary	Tweed Shire Council
43 box	27/08/2019 0:00	Floodgate	1		2.4	1.8	545050	6870702	-0.68		Fair	Primary	Tweed Shire Council
43 buoyancy	27/08/2019 0:00	Floodgate	1			1.1	545050	6870702		-0.97	Good		Tweed Shire Council
43 circular	27/08/2019 0:00	Floodgate	1	0.4			545050	6870702	-0.45			Secondary	Tweed Shire Council
43a	27/08/2019 0:00	Floodgate	1	0.375			545059	6870765		1.45	Fair	Secondary	Tweed Shire Council
44	1/10/2019 8:36	Floodgate	1	1.5			545090	6871063	-0.34		Good	Secondary	Tweed Shire Council
45	1/10/2019 9:16	Floodgate	1	0.6			543141	6869629		0.94	Good	Secondary	Tweed Shire Council
46	1/10/2019 8:27	Floodgate	1	1.5			545093	6871629		-0.37	Fair	Secondary	Tweed Shire Council
47	2/10/2019 8:17	Floodgate	2	0.9			545153	6872575	0.00		Good	Secondary	Tweed Shire Council
47a	2/10/2019 8:26	Floodgate	1	0.45			545455	6872865		-0.36	Fair	Secondary	Tweed Shire Council
48	2/10/2019 8:34	Floodgate	1	1.2			545712	6872886	0.15		Poor	Secondary	Tweed Shire Council
49	2/10/2019 10:41	Floodgate	1	1.5			545928	6872759	-0.80		Fair	Secondary	Tweed Shire Council
50	2/10/2019 10:56	Floodgate	2	1.5			546242	6872764		0.09	Good	Secondary	Tweed Shire Council
50a	2/10/2019 10:41	Floodgate	1	0.375			546393	6872790			Good	Secondary	Tweed Shire Council
51	2/10/2019 10:41	Floodgate	1	0.375			546274	6872766			Good	Secondary	Tweed Shire Council
51a	2/10/2019 11:15	Floodgate	1	0.375			546389	6872792	1.48		Poor	Secondary	Tweed Shire Council

Comment

Culvert is under a road.

Culvert is under a road. There was 0.2 m of sediment in the base of the culvert on the upstream side.

Culvert is under a road. The downstream side was partially submerged at the time of the survey. One of two culverts. One large box culvert with a buoyancy tidal gate on it. One smaller circular culvert.

Buoyancy gate for structure 43. Width not measured. Invert approximate.

One of two culverts. One large box culvert with a buoyancy tidal gate on it. One smaller circular culvert.

Dry on the downstream side.

There was a small culvert to the right of the main culvert (also in good condition) which is attached to a pump on the upstream side. The pump did not appear to be working.

Culvert is under a road.

Could not access the upstream side. The downstream side of the gate was blocked by 0.3 m of sediment. Culvert dimensions and invert are approximate.

Invert approximate.

Floodgate flap is corroded and leaking. Culvert is under a road. Culvert has been infilled with approximately 0.5 m of sediment.

Invert not measured due to poor GPS signal. Floodgate is above the tidal range. Invert not measured due to poor GPS signal. Floodgate is above the tidal range. The upstream side of the culvert is completely blocked.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
52	2/10/2019 11:20	Culvert	1		2.45	1.8	546496	6872822	-1.60		Other	Secondary	Tweed Shire Council
53	2/10/2019 11:30	Floodgate	1		2.55	1.8	546891	6872748	-0.69		Good	Primary	Tweed Shire Council
54	2/10/2019 11:39	Floodgate	1	0.6			547011	6872665	1.16		Good	Secondary	Tweed Shire Council
55	2/10/2019 11:46	Floodgate	1				547086	6872656		-0.63	Fair	Secondary	Tweed Shire Council
56	2/10/2019 11:50	Floodgate	1	0.375			547153	6872657	1.57		Fair	Secondary	Tweed Shire Council
56a	2/10/2019 12:01	Floodgate	1	0.375			547225	6872662	1.94		Fair	Secondary	Tweed Shire Council
57	2/10/2019 12:05	Floodgate	1	0.45			547389	6872689		1.07	Fair	Secondary	Tweed Shire Council
58	2/10/2019 12:17	Floodgate	1	1.2			547534	6872738	0.15		Good	Secondary	Tweed Shire Council
59	2/10/2019 12:21	Floodgate	1	0.45			547638	6872752		1.32	Good	Secondary	Tweed Shire Council
60	2/10/2019 12:32	Floodgate	1	0.375			547934	6872915	0.94		Good	Secondary	Tweed Shire Council
61	2/10/2019 12:39	Floodgate	1	0.375			548019	6872983	0.92		Good	Secondary	Tweed Shire Council
62	2/10/2019 12:47	Floodgate	1	0.9			548061	6873035		-0.17	Good	Secondary	Tweed Shire Council
63	2/10/2019 12:59	Floodgate	3		2.49	1.8	548255	6873436	-0.75		Fair	Primary	Tweed Shire Council
68 centre	27/08/2019 0:00	Floodgate	3	1.5			545848	6872559	-0.25		Good	Primary	Tweed Shire Council
68 left	27/08/2019 0:00	Floodgate	3	1.5			545848	6872559	-0.21		Good	Primary	Tweed Shire Council
68 right	27/08/2019 0:00	Floodgate	3	1.5			545848	6872559	-0.45		Good	Primary	Tweed Shire Council
75	25/02/2020 15:07	Floodgate	4	1.5			547457	6872445		-0.54	Good	Primary	Tweed Shire Council
76	25/02/2020 15:26	Floodgate	3		2.5	1.8	547658	6872452		-1.83		Secondary	Tweed Shire Council
78	25/02/2020 15:49	Floodgate	4		2.5	1.8	548811	6872119		-0.67	Good	Primary	Tweed Shire Council
79	27/08/2019 0:00	Floodgate	2	0.5			549391	6872265		-0.21	Good	Secondary	Tweed Shire Council
80	25/02/2020 16:09	Floodgate	6		2.5	1.8	549610	6872385		-0.76	Good	Primary	Tweed Shire Council
87	25/02/2020 16:25	Floodgate	2		2.4	1.8	550443	6873551		-0.98	Good	Primary	Tweed Shire Council

Comment

Floodgate flap has been removed

Invert is approximate.

The downstream side of the floodgate was underwater at the time of inspection and there was approximately 0.5 m of sediment in front of the gate.

Culvert is within a stormwater pit on upstream side.

Culvert is within a stormwater pit on upstream side.

Culvert is within a stormwater pit on upstream side.

Culvert is under a road. Invert is approximate.

All gates have a winch. The right gate appears to be leaking.

One of three culverts. All 1.5 m diameter circular culverts on upstream side. On the downstream side the two left culvers are rectangular and the right culvert is still circular.

One of three culverts. All 1.5 m diameter circular culverts on upstream side. On the downstream side the two left culverts are rectangular and the right culvert is still circular.

One of three culverts. All 1.5 m diameter circular culverts on upstream side. On the downstream side the two left culverts are rectangular and the right culvert is still circular.

Good condition.

Structure under water at time of survey. Approximate width estimated from other structures. Number of gates assumed from inspection (possible fourth gate was undetected).

Buoyancy tidal gate on left gate.

Poor GPS precision reduced the accuracy for the invert level.

Dimensions and invert levels are an estimate. Could not access gates.

Sluice gate on left gate was closed.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
101	2/10/2019 14:21	Floodgate	1	0.45			552779	6875417		-2.80	Poor	Secondary	Tweed Shire Council
102	2/10/2019 14:29	Floodgate	2	0.45			552988	6875577	0.67		Good	Secondary	Tweed Shire Council
103	2/10/2019 14:33	Floodgate	4		1.8	1.25	553041	6875634	-0.27		Good	Primary	Tweed Shire Council
103 buoyancy	2/10/2019 14:41	Floodgate	1		0.6	0.6	553030	6875646		0.03	Good		Tweed Shire Council
104	2/10/2019 14:51	Floodgate	1	1.5			553360	6875828		-0.71	Good	Secondary	Tweed Shire Council
105	2/10/2019 14:56	Floodgate	1	0.6			553433	6875872		-0.01		Secondary	Tweed Shire Council
106	27/08/2019 0:00	Floodgate	1	0.45			553548	6875936	0.40			Secondary	Tweed Shire Council
107	27/08/2019 0:00	Floodgate	2	0.45			553774	6876038			Fair	Secondary	Tweed Shire Council
108 left	27/08/2019 0:00	Floodgate	2	0.9			553876	6876086		-0.40	Good	Secondary	Tweed Shire Council
108 right	27/08/2019 0:00	Floodgate	2	0.9			553876	6876086		-0.37	Good	Secondary	Tweed Shire Council
109	27/08/2019 0:00	Floodgate	1	0.385			553986	6876148		0.16	Good	Secondary	Tweed Shire Council
109A	27/08/2019 0:00	Floodgate	1	0.6			554109	6876219		-0.04	Fair	Secondary	Tweed Shire Council
109B	27/08/2019 0:00	Floodgate	1	0.45			554200	6876284		-0.14	Good	Secondary	Tweed Shire Council
110	27/08/2019 0:00	Floodgate	3		1.8	1.2	554286	6876351		-0.59	Good	Primary	Tweed Shire Council
110A centre	27/08/2019 0:00	Floodgate	1	0.6			554406	6876501		-0.21	Good	Secondary	Tweed Shire Council
110A left	27/08/2019 0:00	Floodgate	1	0.6			554406	6876501		-0.23	Good	Secondary	Tweed Shire Council
110A right	27/08/2019 0:00	Floodgate	1	0.6			554406	6876501		-0.19	Good	Secondary	Tweed Shire Council
110c	2/10/2019 15:09	Floodgate	1	0.45			554504	6876779		0.66	Good	Secondary	Tweed Shire Council
110D	27/08/2019 0:00	Floodgate	1	0.3			554346	6876426		0.42	Poor	Secondary	Tweed Shire Council
111 left	3/10/2019 10:40	Floodgate	7	1.35			553591	6879336		-0.79	Good	Secondary	Tweed Shire Council
111 right	3/10/2019 10:40	Floodgate	7	1.8			553591	6879336		-0.97	Good	Secondary	Tweed Shire Council
111a	24/10/2019 16:40	Weir/ Culvert	3	0.6			550714	6879164			Good	Secondary	Tweed Shire Council

Comment

Culvert is under a highway. The downstream side is almost completely blocked with mangroves.

Buoyancy tidal gate on left hand gate.

Buoyance gate for structure 103.

Floodgate winched open.

Poor GPS signal on downstream side so only upstream measurement reliable.

Poor GPS reception did not allow for invert measurements. Downstream side partially blocked with sediment.

One of two culverts. Two circular flaps flow into two rectangular culverts which are in a stormwater pit (i.e. there are rectangular culverts on the upstream side). Structure is different to the 1970s flood mitigation dataset.

One of two culverts. Two circular flaps flow into two rectangular culverts which are in a stormwater pit (i.e. there are rectangular culverts on the upstream side). Structure is different to the 1970s flood mitigation dataset.

Structure is different to the 1970s flood mitigation dataset. The upstream side is within a stormwater system.

The upstream side is within a stormwater system.

The upstream side is within a stormwater system.

Left culvert flap has an "L" shape to fit around a concrete bench on the side of the culvert.

One of three culverts.

One of three culverts.

One of three culverts.

Pipe cracked and in poor condition.

Six of seven floodgates.

One of seven floodgates. Buoyancy tidal gate on the right floodgate flap with an obvert of 0.279 m AHD - dimensions not measured.

Three 0.6 m diameter culverts flow to a pit 3 m by 0.9 m, water only flows out if upstream water level is higher than pit crest level. Tide can flow upstream

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
111B left 1	27/08/2019 0:00	Floodgate	1	0.9			550270	6878714	-0.51		Good	Secondary	Tweed Shire Council
111B right 1	27/08/2019 0:00	Floodgate	1	0.9			550270	6878714	-0.48		Good	Secondary	Tweed Shire Council
111B left 2	27/08/2019 0:00	Floodgate	1	0.9			550270	6878714	-0.53		Good	Secondary	Tweed Shire Council
111B right 2	27/08/2019 0:00	Floodgate	1	0.9			550270	6878714	-0.55		Good	Secondary	Tweed Shire Council
111B left 3	27/08/2019 0:00	Floodgate	1	0.9			550270	6878714	-0.53		Good	Secondary	Tweed Shire Council
111B right 3	27/08/2019 0:00	Floodgate	1	0.9			550270	6878714	-0.49		Good	Secondary	Tweed Shire Council
115	27/08/2019 0:00	Floodgate	1		1.8	1.2	553841	6881020	-0.87		Fair	Secondary	Tweed Shire Council
116	3/10/2019 10:03	Floodgate	1	0.45			553615	6881040			Fair	Secondary	Tweed Shire Council
119	3/10/2019 10:03	Floodgate	1	0.6			553472	6881070		-0.02	Fair	Secondary	Tweed Shire Council
121	27/08/2019 0:00	Floodgate	4	1.5			553335	6881118	0.13	-0.87	Good	Secondary	Tweed Shire Council
121a	3/10/2019 8:51	Floodgate	1	0.35			553250	6881165			Good	Secondary	Tweed Shire Council
122	3/10/2019 8:51	Floodgate	1	0.45			553179	6881244		-0.10	Good	Secondary	Tweed Shire Council
122a	3/10/2019 8:51	Floodgate	1	0.5			553167	6881280		-0.28	Good	Secondary	Tweed Shire Council
123	3/10/2019 8:51	Floodgate	1	0.375			553142	6881323		0.06	Good	Secondary	Tweed Shire Council
123a	3/10/2019 8:51	Floodgate	1	0.375			553130	6881605		0.14	Poor	Secondary	Tweed Shire Council
123b	3/10/2019 8:38	Floodgate	1	0.45			553133	6881662			Good	Secondary	Tweed Shire Council
124	3/10/2019 8:38	Floodgate	1	0.45			553132	6881661			Fair	Secondary	Tweed Shire Council
124a	3/10/2019 8:51	Floodgate	2	0.45			553119	6881452		0.06	Poor	Secondary	Tweed Shire Council
124b	3/10/2019 8:51	Floodgate	1	0.75			553120	6881376			Good	Secondary	Tweed Shire Council
125	3/10/2019 8:38	Floodgate	1	0.45			553128	6881848		0.09	Poor	Secondary	Tweed Shire Council
126	3/10/2019 8:34	Floodgate	1	0.45			553080	6881910		0.02	Good	Secondary	Tweed Shire Council
127	3/10/2019 8:29	Culvert	1	0.45			552999	6881995		0.36	Other	Secondary	Tweed Shire Council
127A	27/08/2019 0:00	Floodgate	1	0.4			552917	6882073		0.23	Good	Secondary	Tweed Shire Council
127a	3/10/2019 8:21	Floodgate	1	0.375			552917	6882073		0.39		Secondary	Tweed Shire Council

Comment

if higher than pit crest level. Measured overflow point (crest level) as 0.524 m AHD. One of six floodgates. Floodgate drains through a residential development. One of six floodgates. Floodgate drains through a residential development. One of six floodgates. Floodgate drains through a residential development. One of six floodgates. Floodgate drains through a residential development. One of six floodgates. Floodgate drains through a residential development. One of six floodgates. Floodgate drains through a residential development. Weir located approximately 15 m upstream with a circular culvert approximately 0.6 m in diameter underneath it. Flap not closing properly due to debris. Invert not taken due to poor GPS signal.

Large drain. Left culvert invert measured. Left culvert gate winched open. Different structure to the 1970s flood mitigation dataset. Invert not measured due to poor GPS signal. Invert above 0.441 m AHD.

Lots of vegetation growth within pipe. The culvert is 0.1 m thick.

The culvert is 0.0625 m thick.

Cracks present in the concrete floodgate flap.

Invert not measured due to poor GPS signal. Invert above 0.37 m AHD.

Invert not measured due to poor GPS signal. Invert above 0.37 m AHD.

Left gate has no seal and right gate had holes in the flap. The culvert is 0.05 m thick.

Floodgate flap had a few cracks near the hinge. There was sand halfway up the floodgate in front of the culvert blocking it.

There was 0.02 m of sand in front of the floodgate.

The culvert was broken and half blocked with sand.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
127b	3/10/2019 8:18	Floodgate	1	0.45			552882	6882118		-0.06	Good	Secondary	Tweed Shire Council
128	3/10/2019 13:20	Floodgate	1	0.75			552763	6881631		-0.10		Secondary	Tweed Shire Council
128a	3/10/2019 13:27	Floodgate	1	0.45			552824	6881685		0.59		Secondary	Tweed Shire Council
129	3/10/2019 13:34	Floodgate	1	0.9			552708	6881581	0.49	0.49		Secondary	Tweed Shire Council
130	3/10/2019 13:13	Floodgate	1	0.45			552585	6881488		-0.10		Secondary	Tweed Shire Council
131	3/10/2019 13:10	Floodgate	1		1.8	1.2	552549	6881454		-0.82	Good	Secondary	Tweed Shire Council
132	3/10/2019 13:06	Floodgate	1	0.75			552474	6881443		-0.32		Secondary	Tweed Shire Council
133	3/10/2019 13:01	Floodgate	1	0.9			552434	6881437		-0.01	Good	Secondary	Tweed Shire Council
134	3/10/2019 12:56	Floodgate	1	0.45			552372	6881432	0.37	0.37		Secondary	Tweed Shire Council
135	3/10/2019 12:53	Floodgate	1	0.45			552363	6881439		0.22	Fair	Secondary	Tweed Shire Council
135a	3/10/2019 11:50	Floodgate	1	0.75			552268	6881429		0.18	Good	Secondary	Tweed Shire Council
136	3/10/2019 12:02	Floodgate	1	0.9			552258	6881428		-0.08	Good	Secondary	Tweed Shire Council
136a	3/10/2019 12:08	Floodgate	1	0.375						0.31		Secondary	Tweed Shire Council
138	3/10/2019 12:15	Floodgate	1	0.375			552048	6881376		0.06	Fair	Secondary	Tweed Shire Council
139b	3/10/2019 11:10	Floodgate	2	0.6			551516	6881272		0.32	Fair	Secondary	Tweed Shire Council
139c	3/10/2019 11:19	Floodgate	2	0.15			551322	6881267		0.66	Good	Secondary	Tweed Shire Council
140	30/09/2019 13:46	Floodgate	1		2.4	1.7	535855	6867036	0.03		Fair	Secondary	Tweed Shire Council
139 left 1	27/08/2019 0:00	Floodgate	1	0.6			551859	6881317	-0.14		Good	Secondary	Tweed Shire Council
139 right 1	27/08/2019 0:00	Floodgate	1	0.6			551859	6881317	-0.22		Good	Secondary	Tweed Shire Council
139 left 2	27/08/2019 0:00	Floodgate	1	0.6			551859	6881317	-0.16		Good	Secondary	Tweed Shire Council
139 right 2	27/08/2019 0:00	Floodgate	1	0.6			551859	6881317	-0.15		Good	Secondary	Tweed Shire Council
145	30/09/2019 13:34	Floodgate	1		2.2	1.9	536724	6866962	0.04		Fair	Primary	Tweed Shire Council
146	30/09/2019 13:23	Floodgate	1	0.4			536806	6866932	2.26		Good	Secondary	Tweed Shire Council
148	30/09/2019 13:12	Floodgate	2		2.5	1.8	537618	6867563	-0.30		Good	Primary	Tweed Shire Council

Comment

The culvert is 0.05 m thick.

The culvert is 0.085 m thick.

Invert is approximate.

Invert is approximate.

Invert is approximate.

The culvert is 0.095 m thick.

Poor GPS signal during measurement of invert. Flap has a diameter of 0.9 m.

The culvert is 0.0625 m thick.

The culvert is 0.0625 m thick.

Poor GPS signal when measuring the invert. Approximately 0.3m of sediments infilling the base of the culvert.

Buoyancy tidal gate present (not measured). Could not access the upstream side. Dimensions and invert are approximate.

One of four gates. One gate wedged open. Fish upstream. Gate dimensions were different to 1970s flood mitigation dataset.

One of four gates. One gate wedged open. Fish upstream. Gate dimensions were different to 1970s flood mitigation dataset.

One of four gates. One gate wedged open. Fish upstream. Gate dimensions were different to 1970s flood mitigation dataset.

One of four gates. One gate wedged open. Fish upstream. Gate dimensions were different to 1970s flood mitigation dataset.

Floodgate has a winch. Dimensions are approximate.

Buoyancy gate on the right floodgate. Left floodgate has a winch.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure
148 buoyancy	30/09/2019 13:17	Floodgate	1		0.5	1	537628	6867554		-0.55	Good		Tweed Shire Council
153	25/02/2020 11:01	Floodgate	2		2.5	1.8	539033	6867519		-0.36	Good	Secondary	Tweed Shire Council
155	25/02/2020 10:31	Floodgate	2		2.5	1.8	539142	6868064		-0.73	Good	Primary	Tweed Shire Council
159	30/09/2019 12:53	Floodgate	1	2.52	1.9		538318	6869035	-0.41		Good	Secondary	Tweed Shire Council
160a	30/09/2019 12:38	Floodgate	1	0.6			538128	6869606	2.08		Good	Secondary	Tweed Shire Council
162	25/02/2020 13:37	Floodgate	3		2.5	1.8	538151	6870237	-0.39		Good	Primary	Tweed Shire Council
165	30/09/2019 11:39	Floodgate	1	0.6			537916	6870449	2.03			Secondary	Tweed Shire Council
166	30/09/2019 11:42	Floodgate	1	1.5			537909	6870473	0.24			Secondary	Tweed Shire Council
167	30/09/2019 12:10	Floodgate	1		2.6	1.3	537593	6870702		0.27	Good	Secondary	Tweed Shire Council
168	30/09/2019 11:24	Culvert	2	1.2			538393	6870454	-0.54		Fair	Primary	Tweed Shire Council
170 left	30/09/2019 11:09	Floodgate	1	1.5			539471	6870313	-0.25		Good	Primary	Tweed Shire Council
170 right	30/09/2019 11:09	Floodgate	1	0.9			539471	6870313	0.26		Good	Primary	Tweed Shire Council
183	30/09/2019 10:49	Floodgate	1	1.5			541089	6870782	-0.65		Fair	Secondary	Tweed Shire Council
183b	30/09/2019 10:55	Floodgate	1	0.45			541115	6870776	0.87		Good	Secondary	Tweed Shire Council
188	30/09/2019 10:34	Floodgate	3		2.4	1.72	541915	6871300	-0.48		Good	Primary	Tweed Shire Council
190	30/09/2019 10:22	Floodgate	1	0.6			542565	6871729	-0.32		Fair	Secondary	Tweed Shire Council
191	30/09/2019 10:14	Floodgate	3		2.45	1.85	542594	6871735	-0.91		Good	Primary	Tweed Shire Council
192	30/09/2019 9:58	Floodgate	1	1.5			543756	6872361	-0.73		Poor	Secondary	Tweed Shire Council
195	25/02/2020 14:24	Floodgate	2		2.5	1.8	543410	6871175	-0.76		Good	Primary	Tweed Shire Council
199	25/02/2020 14:38	Floodgate	1		2.5	1.8	543960	6871543	-0.70		Good	Primary	Tweed Shire Council
206	27/08/2019 0:00	Floodgate	2	0.75			550766	6880704		-0.14	Good	Secondary	Tweed Shire Council
206 buoyancy	27/08/2019 0:00	Floodgate	1				550766	6880704		-0.06	Good		Tweed Shire Council
210 left	27/08/2019 0:00	Floodgate	1	0.6			551893	6876049	-0.21		Poor	Secondary	Tweed Shire Council

Comment

Buoyance gate for structure 148. Invert and dimensions are approximate.

Could not access the floodgate. Indicative invert estimated from water level. Dimensions taken from similar nearby gate.

The culvert is under a road.

Culvert is at a high elevation with respect to other structures.

Culvert is beside a road.

Culvert is beside a road.

Culvert is under a road. Large tree inside the culvert. The floodgate was partially open. The invert level was approximate due to a poor GPS signal. Culvert is under a road. The upstream side of the culvert was underwater.

One of three floodgates. Culvert is under a road. The upstream channel is very weedy. The left floodgate is slightly winched open.

Two of three floodgates. Culvert is under a road. The upstream channel is very weedy. The left floodgate is slightly winched open.

Culvert is under a road.

Culvert is beside a road.

Culvert under a road. Winch on the middle gate. Evidence of tidal flushing using a small sluice on the left gate.

Downstream floodgate was underwater and could not be seen at the time of inspection.

Winch located on the middle floodgate flap.

Old timber floodgate, leaking.

Culvert invert is 0.08 m below buoyancy gate invert. Buoyancy tidal gate on right hand floodgate. Buoyancy tidal gate for structure 206. Size not measured. One of two floodgates. Mangroves upstream, farmer confirmed tide travels upstream of the floodgates.

Number Diameter Width Height Easting Northing Upstream Downstream surveyed Type of (m) (m) (m) (m) Invert Invert Condition C Culverts (m) (m) GDA94 GDA94 (m AHD) (m AHD)	Category Tenu	ure
27/08/2019 0:00 Floodgate 1 0.6 551893 6876049 -0.35 Poor S	Secondary Tweed Court	
27/08/2019 0:00 Floodgate 1 0.4 551961 6876044 0.38 Poor S	Secondary Tweed Court	
24/10/2019	Secondary Tweed Court	Shire
24/10/2019 16:03 Floodgate 1 0.375 552246 6876079 0.37 0.28 Good S	Secondary Tweed Court	
24/10/2019 15:49 Floodgate 1 0.375 552388 6876105 0.12 Poor S	Secondary Tweed Court	
24/10/2019 15:40 Floodgate 1 0.375 552509 6876114 0.29 Poor S	Secondary Tweed Secondary Cour	
24/10/2019 15:34 Floodgate 1 0.475 552661 6876142 0.44 Good S	Secondary Tweed Court	
27/08/2019 0:00 Floodgate 1 0.53 552721 6876156 0.02 S	Secondary Tweed Court	
2/10/2019 15:38 Floodgate 1 0.375 554855 6878045 0.22 S	Secondary Tweed Court	
2/10/2019 15:38 Floodgate 1 0.375 554892 6878086 0.16 S	Secondary Tweed Court	ncil
15:54	Secondary Tweed Court	ncil
0:00	Secondary Tweed	ncil
16:06	Secondary Tweed Court	ncil
16:18	Secondary Tweed	ncil
16:18	Secondary Tweed Court	ncil
16:21	Secondary Tweed	ncil
16:22	Secondary Tweed Court	ncil
16:24	Secondary Tweed	ncil
16:25	Secondary Tweed	ncil
16:20	Secondary Tweed	ncil
16:29	Secondary Tweed	ncil
16:50	Secondary Tweed Court	ncil
16:51	Secondary Tweed	ncil
16:54	Secondary Tweed	ncil
2/10/2019 16:56 Floodgate 1 0.3 555346 6879404 0.95 Good S	Secondary Tweed	

Comment

One of two floodgates. Mangroves upstream, farmer confirmed tide travels upstream of the floodgates

Downstream side blocked with rocks.

Banora Point.

Banora Point.

Banora Point. Flap blocked by sand and wedged slightly open.

Banora Point. Flap blocked by sand preventing it from opening. Outer diameter is 0.4 m, assume 0.03 m pipe wall thickness (this is the same dimensions as Structure 212).

Banora Point.

The upstream side of the culvert is partially broken. This is not affecting the floodgate performance.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure	Comment
237	2/10/2019 16:57	Floodgate	1	0.3			555356	6879458	1.01		Fair	Secondary	Tweed Shire Council	The culvert is presenting cracks and starting to collapse, however the floodgate flap is in good condition.
238	2/10/2019 17:03	Floodgate	1	0.45			555370	6879615		0.03		Secondary	Tweed Shire Council	
239	2/10/2019 17:08	Floodgate	1	0.45			555385	6879772		-0.14	Good	Secondary	Tweed Shire Council	
251	25/10/2019 12:29	Floodgate	3	~1.2			553713	6884022		-0.66	Good	Secondary	Tweed Shire Council	Assumed that culverts had a diameter of 1.2 m - outside of the culverts was 1.5 m in diameter.
251a	25/10/2019 12:44	Floodgate	1	0.45			553703	6882295		0.68	Good	Secondary	Tweed Shire Council	
264	25/10/2019 11:45	Floodgate	1		1.18	0.7	548115	6881832		-0.31	Poor	Secondary	Tweed Shire Council	There is a leak in the side of the culvert. Culverts downstream are under a road; have no flaps and were not surveyed.
264a	25/10/2019 11:59	Floodgate	1	0.4			547637	6881839	-0.02		Good	Secondary	Tweed Shire Council	The upstream was infilled with 0.1 m of silt. The downstream side was underwater at the time of inspection. Flaps working well.
WRL_TW_01	27/08/2019 0:00	Floodgate	1	1			554404	6876495		-1.12	Poor	Secondary	Private/unknown	Dimensions and invert approximate only. Floodgate completely blocked by rocks. Gate leaks but cannot open.
WRL_TW_02	27/08/2019 0:00	Weir					554999	6878273			Good	Secondary	Private/unknown	Rock weir downstream of lake. Crest elevation of lowest point in weir was -0.222 m AHD.
WRL_TW_03	30/09/2019 11:27	Floodgate	1	1.2			538384	6870472	-0.12		Fair	Secondary	Private/unknown	Upstream of structure 168. Within private property.
WRL_TW_04	30/09/2019 12:47	Floodgate	1	0.45			538335	6869020	1.77		Good	Secondary	Private/unknown	Downstream of structure 159 on the right bank.
WRL_TW_05	30/09/2019 12:49	Floodgate	1	0.45			538327	6869051	1.52		Good	Secondary	Private/unknown	Downstream of structure 159 on the left bank.
WRL_TW_06	2/10/2019 12:49	Floodgate	1	0.45			548029	6873044	0.00		Fair	Secondary	Private/unknown	Upstream structure 62.
WRL_TW_07	2/10/2019 17:00	Floodgate	2	0.9			555366	6879518		-0.23		Secondary	Private/unknown	
WRL_TW_08	3/10/2019 8:13	Floodgate	1	0.15			552848	6882169		0.38	Good	Secondary	Private/unknown	
WRL_TW_09	3/10/2019 8:15	Culvert	1	0.375			552857	6882149		0.61	Other	Secondary	Private/unknown	Culvert broken.
WRL_TW_10	25/10/2019 11:13	Culvert	1	0.6			547279	6877801	-0.37		Poor	Secondary	Private/unknown	The downstream side of the culvert is blocked by corrugated metal however water can still leak past it. The culvert has been infilled with silt so there is approximately 0.2 m of freeboard.
WRL_TW_11	7/11/2019 0:00	Floodgate	1	0.6			542048	6865415	-0.13		Good	Secondary	Private/unknown	
WRL_TW_12	7/11/2019 0:00	Sluice gate	1		2.1		541459	6865616		-0.02	Good	Secondary	Private/unknown	Weir with sluice gate which was open at the time of inspection. Structure still acted as a weir when open. Current crest elevation is -0.019 m AHD. Crest elevation when sluice is used becomes 0.586 m AHD.
WRL_TW_13	8/11/2019 0:00	Floodgate	2		0.6	1	539874	6865034		-0.44	Fair	Secondary	Private/unknown	Structure has a pump mounted to it to allow discharge if the tide is high.
WRL_TW_14	8/11/2019 0:00	Floodgate	1	0.8			539935	6865056	-0.07		Good	Secondary	Private/unknown	
WRL_TW_15	25/02/2020 12:25	Floodgate	1	0.9			543253	6871369	-0.50		Good	Primary	Private/unknown	Weir over structure at 1.349 m AHD.

Structure ID*	Date/time surveyed	Туре	Number of Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m) GDA94	Northing (m) GDA94	Upstream Invert (m AHD)	Downstream Invert (m AHD)	Condition	Category	Tenure	Comment
WRL_TW_17	2/10/2019 12:23	Culvert	1	0.375			547632	6872768	1.69		Poor	Secondary	Private/unknown	Culvert is under a road.
WRL_TW_18	2/10/2019 12:40	Culvert	1	0.375			548013	6872989	0.93		Other	Secondary	Private/unknown	Flap has been removed. Culvert is under a road.

* Structure ID's have been provided by Tweed Shire Council. If a structure was identified that did not have a Tweed Council ID it has been given a WRL ID (WRL_TW_##).

Table F-4: Summary of data collected by Abbott and Marco Land and engineering surveyors and others

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition
5	Floodgate	1	0.45			539176.9	6866435	1.559	Secondary	Tweed Shire Council	Good
6	Floodgate	1	0.3			539177.8	6866439	4.252	Secondary	Tweed Shire Council	Good
9	Floodgate	1	0.6			539349.9	6866471	3.185	Secondary	Tweed Shire Council	Good
11	Floodgate	1	0.45			539122	6865151	3.586	Secondary	Tweed Shire Council	Good
12	Floodgate	1	0.6			539126	6865358	2.19	Secondary	Tweed Shire Council	Good
13	Floodgate	1	0.9			539070.7	6865602	-0.027	Secondary	Tweed Shire Council	Good
18		1	0.45			539562.2	6866485	0.961	Secondary	Tweed Shire Council	Good
19	Floodgate	1	0.6			539734.2	6866569	0.764	Secondary	Tweed Shire Council	Good
20	Floodgate	1	0.9			540015	6866689	0.494	Secondary	Tweed Shire Council	Good
21	Floodgate	1	0.45			540031.2	6866791	2.177	Secondary	Tweed Shire Council	Good
22	Floodgate	1	0.45			540033.3	6866811	2.168	Secondary	Tweed Shire Council	Good
23	Floodgate	1	0.6			539939.3	6866882	1.793	Secondary	Tweed Shire Council	Good
24	Floodgate	1	0.9			539853.8	6866943	1.273	Secondary	Tweed Shire Council	Good
25	Floodgate	1	0.9			539831.8	6867018	1.589	Secondary	Tweed Shire Council	Good
35	Floodgate	1	0.9			545246	6870643	-0.698	Secondary	Tweed Shire Council	Good
36	Floodgate	1	0.6			545271.6	6870806	-0.476	Secondary	Tweed Shire Council	Good
39	Floodgate	1	0.45			545305.3	6871532	0.797	Secondary	Tweed Shire Council	Good
51	Floodgate	1	0.375			546276.1	6872764	1.201	Secondary	Tweed Shire Council	Good
64	Floodgate	1	1.2			548519	6873390	-1.104	Secondary	Tweed Shire Council	Good
65	Floodgate	1	0.3			548798.8	6873302	0.488	Secondary	Tweed Shire Council	Fair
66	Floodgate	1	0.45			548928.7	6873307	-0.543	Secondary	Tweed Shire Council	Good
69	Floodgate	1	0.9			546075.5	6872513	-0.705	Secondary	Tweed Shire Council	Fair
70	Floodgate	1	0.6			546239.1	6872519	-0.571	Secondary	Tweed Shire Council	Other
72	Floodgate	1	0.9			546743.4	6872595	-0.658	Secondary	Tweed Shire Council	Good
73	Floodgate	1	0.9			546873	6872568	-0.881	Secondary	Tweed Shire Council	Fair
74	Floodgate	1	0.9			547157.7	6872479	-0.559	Secondary	Tweed Shire Council	Good
77	Floodgate	1	1.5			548118	6872142	-0.784	Secondary	Tweed Shire Council	Good
81	Floodgate	1	0.45			549803.1	6872428	-0.607	Secondary	Tweed Shire Council	Poor
84	Floodgate	1	0.375			549884.9	6872834	-0.076	Secondary	Tweed Shire Council	Good
85	Floodgate	1	0.6			549944.9	6872956	0.033	Secondary	Tweed Shire Council	Good
89	Floodgate	1	1.5			550716.1	6874292	-1.202	Secondary	Tweed Shire Council	Good
90	Floodgate	1	1.5			550722.9	6874625	-0.335	Secondary	Tweed Shire Council	Good
91	Floodgate	1	0.6			550736.2	6875228	0.078	Secondary	Tweed Shire Council	Good
93	Floodgate	1		2.4	2.1	551297.3	6875357	-0.942	Secondary	Tweed Shire Council	Good
94	Floodgate	1	1.2			551668.3	6875484	-0.617	Secondary	Tweed Shire Council	Good

Data source	Comment
Abbott and Macro	No pumping infrastructure observed
Abbott and Macro	
Abbott and Macro	Structure located on heavily vegetated bank
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	Floodgates 13 and 13A are located in a shared headwall, recent rock work has been completed
Abbott and Macro	
Abbott and Macro	Structure outlet is heavily overgrown
Abbott and Macro	
Abbott and Macro	Erosion observed under the structure headwall, ballast required to stabilise
Abbott and Macro	
Abbott and Macro	Structure has a custom headwall
Abbott and Macro	Floodgate blocked with silt
Abbott and Macro	There is a private road on the levee this structure is located in
Abbott and Macro	Floodgate is silted up, has no seal and is not closing. Erosion observed around the structure headwall
Abbott and Macro	The headwall and floodgate of this structure have collapsed into the river
Abbott and Macro	Minor silting observed at the base of the floodgate
Abbott and Macro	Floodgate is blocked with silt with about ¾ of the floodgate buried
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	Floodgate is blocked with silt and stuck open
Abbott and Macro	

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition	
95	Floodgate	1	0.6			551867.2	6875443	0.12	Secondary	Tweed Shire Council	Good	A
96	Floodgate	1	1.2			552056.1	6875300	-0.514	Secondary	Tweed Shire Council	Good	A
97	Floodgate	1	0.9			552258.7	6875271	-0.568	Secondary	Tweed Shire Council	Good	A
99	Floodgate	1	0.9			552424.6	6875277	-0.352	Secondary	Tweed Shire Council	Good	A
116	Floodgate	1	0.45			553624.3	6881049	0.176	Secondary	Tweed Shire Council	Fair	A
124	Floodgate	1	0.45			553136.2	6881670	0.419	Secondary	Tweed Shire Council	Good	A
141	Floodgate	1	0.6			536218.5	6866604	2.686	Secondary	Tweed Shire Council	Good	A
142	Floodgate	1	0.6			536532	6866612	2.215	Secondary	Tweed Shire Council	Poor	A
143	Floodgate	1	1.2			536595.5	6866681	1.512	Secondary	Tweed Shire Council	Good	A
144	Floodgate	1	0.45			536672.2	6866861	2.729	Secondary	Tweed Shire Council	Good	A
147	Floodgate	1	0.9			536861.7	6866840	0.859	Secondary	Tweed Shire Council	Good	A
150	Floodgate	1		2.4	2.1	538472.7	6868427	-0.539	Secondary	Tweed Shire Council	Good	A
151	Floodgate	1	0.45			538578.6	6868548	2.003	Secondary	Tweed Shire Council	Good	A
152	Floodgate	1	0.375			539923.7	6867312	1.011	Secondary	Tweed Shire Council	Poor	A
154	Culvert	1	1.2			539044.9	6867912	-0.912	Secondary	Tweed Shire Council	Other	A
158	Floodgate	1	0.45			538461.2	6868911	2.386	Secondary	Tweed Shire Council	Good	A
160	Floodgate	1	0.6			538226.1	6869489	0.76	Secondary	Tweed Shire Council	Good	A
161	Floodgate	1		2.4	2.1	538134.2	6869875	-0.759	Secondary	Tweed Shire Council	Good	A
163	Floodgate	1	0.6			538179.8	6870136	0.87	Secondary	Tweed Shire Council	Good	A
164	Floodgate	1	0.45			538221.5	6870367	1.446	Secondary	Tweed Shire Council	Good	A
169	Floodgate	1	1.2			539300.7	6870387	-0.121	Secondary	Tweed Shire Council	Fair	A
172	Floodgate	1	0.6			539583.6	6870131	0.077	Secondary	Tweed Shire Council	Good	A
174	Floodgate	1	0.6			539680.8	6870068	0.11	Secondary	Tweed Shire Council	Good	A
175	Floodgate	1	0.6			539938.3	6870067	0.604	Secondary	Tweed Shire Council	Good	A
176	Floodgate	1	0.6			540055.3	6870069	0.245	Secondary	Tweed Shire Council	Good	A
179	Floodgate	1	0.9			540486	6870172	0.035	Secondary	Tweed Shire Council	Good	A
182	Floodgate	1	0.6			540815.8	6870553	0.035	Secondary	Tweed Shire Council	Good	A
184	Culvert	1	0.6			541365.9	6870799	0.667	Secondary	Tweed Shire Council	Good	A
185	Floodgate	1	0.6			541539.2	6870880	0.047	Secondary	Tweed Shire Council	Good	A
186	Floodgate	1	0.6			541659.3	6870989	0.396	Secondary	Tweed Shire Council	Good	A
193	Floodgate	1	0.6			542784.7	6871015	0.111	Secondary	Tweed Shire Council	Good	A
196	Floodgate	1	1.5			543789.8	6871398	-0.345	Secondary	Tweed Shire Council	Good	A
197	Floodgate	1	1.5			543856.8	6871433	-0.513	Secondary	Tweed Shire Council	Good	A
198	Floodgate	1	0.6			543915	6871514	0.771	Secondary	Tweed Shire Council	Good	A
201	Floodgate	1	0.6			544145.8	6872454	-0.016	Secondary	Tweed Shire Council	Good	A
202	Floodgate	1	0.9			544733.6	6872511	-0.841	Secondary	Tweed Shire Council	Good	A

Data source	Comment
Abbott and Macro	
Abbott and Macro	Floodgate is blocked with silt and stuck open
Abbott and Macro	
Abbott and Macro	Minor silting observed at the base of the floodgate
Abbott and Macro	Floodgate is blocked and buried in silt
Abbott and Macro	Floodgate is located on internal levee bank
Abbott and Macro	Minor silting observed at the base of the floodgate
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	Floodgate is partially buried, stuck open and overgrown with vegetation
Abbott and Macro	Floodgate has been removed, hinges still present
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	Area downstream of the structure is overgrown
Abbott and Macro	The weed 'Singapore Daisy' was observed to be growing on the downstream side of the structure
Abbott and Macro	Structure has a custom headwall and the rubber seal was seen to be falling off
Abbott and Macro	
Abbott and Macro	Lots of plant growth was observed around the headwall
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	An old structure is located downstream of this structure
Abbott and Macro	

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition	Data source	Comment
203	Floodgate	1	0.6			544735.6	6872467	-0.159	Secondary	Tweed Shire Council	Good	Abbott and Macro	
204	Culvert	1	0.6			544931.1	6872232	0.21	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Floodgate flap has fallen off this structure
252	Floodgate	1		2	1.6	551173.5	6881809	-0.897	Secondary	Tweed Shire Council	Good	Abbott and Macro	
253	Floodgate	1	0.45			550606.3	6881770	-0.045	Secondary	Tweed Shire Council	Good	Abbott and Macro	
254	Floodgate	1		3.6	2.1	537788.1	6866851	-0.192	Secondary	Tweed Shire Council	Good	Abbott and Macro	Floodgate has a winch and was winched open at the time of survey
255	Floodgate	1	1.2			538075.7	6866463	1.69	Secondary	Tweed Shire Council	Good	Abbott and Macro	Floodgate is located in a semi-open pit
256	Floodgate	1	1.2			537788.4	6866493	0.166	Secondary	Tweed Shire Council	Good	Abbott and Macro	
502	Floodgate	1	1.5			539031.6	6866273	-0.612	Secondary	Tweed Shire Council	Good	Abbott and Macro	
503	Floodgate	1	0.3			538914.8	6865682	1.127	Secondary	Tweed Shire Council	Poor	Abbott and Macro	River bank has collapsed and the pipe is broken
100	Floodgate	1		1.8	1.5	552645	6875351	-0.688	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 5 culverts with floodgates
100	Floodgate	1		1.8	1.5	552643.5	6875350	-0.711	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 5 culverts with floodgates
100	Floodgate	1		1.8	1.5	552641.7	6875350	-0.707	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 5 culverts with floodgates. This floodgate has a working tidal sluice installed on it
100	Floodgate	1		1.8	1.5	552639.8	6875349	-0.714	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 5 culverts with floodgates
100	Floodgate	1	0.3			552638.3	6875348	-0.543	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 5 culverts with floodgates
107	Floodgate	1	0.45			553772.1	6876042	0.084	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates. Lots of flood debris was observed in the downstream channel
107	Floodgate	1	0.45			553772.6	6876042	0.135	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates. Lots of flood debris was observed in the downstream channel
111C	Floodgate	1	0.9			552497.3	6878644	1.233	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure has pumping infrastructure on the upstream side
111D	Floodgate	1	1.5			553980.7	6879872	-0.875	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates and has been modified with a small tidal sluice
111D	Floodgate	1	1.5			553980.4	6879874	-0.875	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates and has been modified with a small tidal sluice
111E	Floodgate	1	1.2			553883	6879796	-0.835	Secondary	Tweed Shire Council	Good	Abbott and Macro	
111E	Floodgate	1	1.2			553883.6	6879797	-0.835	Secondary	Tweed Shire Council	Good	Abbott and Macro	
111F	Floodgate	1	0.6			552552.5	6878776	0.839	Secondary	Tweed Shire Council	Good	Abbott and Macro	
115B	Floodgate	1	0.45			553992.6	6880597	0.354	Secondary	Tweed Shire Council	Good	Abbott and Macro	
121A	Floodgate	1	0.45			553252	6881169	0.809	Secondary	Tweed Shire Council	Good	Abbott and Macro	
123B	Floodgate	1	0.45			553135.4	6881664	0.459	Secondary	Tweed Shire Council	Good	Abbott and Macro	
124B	Floodgate	1	0.9			553126.1	6881378	0.009	Secondary	Tweed Shire Council	Good	Abbott and Macro	
136A	Floodgate	1	0.375			552215.2	6881427	0.101	Secondary	Private/Unknown	Good	Abbott and Macro	
137	Floodgate	1	0.45			552145.2	6881409	-0.336	Secondary	Tweed Shire Council	Good	Abbott and Macro	
139A	Culvert	1	0.6			551675.8	6881362	-0.54	Secondary	Tweed Shire Council	Poor	Abbott and Macro	Structure is 1 of 2 culverts, this culvert has no floodgates and is cracked
139A	Floodgate	1	0.6			551676.6	6881362	-0.508	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 2 culverts, this culvert has a floodgate that is blocked with oysters
13A	Floodgate	1	0.45			539070.9	6865601	0.014	Secondary	Tweed Shire Council	Good	Abbott and Macro	
144A	Floodgate	1	0.45			536694.4	6866901	2.516	Secondary	Tweed Shire Council	Good	Abbott and Macro	

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition	Data source	Comment
149	Floodgate	1	1.2			538263	6867893	0.189	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
149	Floodgate	1	1.2			538263.8	6867894	1.214	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
15	Floodgate	1	0.6			539046.2	6866021	0.045	Secondary	Tweed Shire Council	Good	Abbott and Macro	The bank around this structure has been rock armored. Structure is 1 of 2 floodgates on twin pipes flowing into a concrete box
15	Floodgate	1	0.6			539045.9	6866020	0.014	Secondary	Tweed Shire Council	Good	Abbott and Macro	The bank around this structure has been rock armored. Structure is 1 of 2 floodgates on twin pipes flowing into a concrete box
151A	Floodgate	1	0.45			538554.7	6868707	1.496	Secondary	Tweed Shire Council	Good	Abbott and Macro	
155	Floodgate	1		2.4	1.8	539159.2	6868069	-0.519	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates. The downstream area is overgrown
155	Floodgate	1		2.4	1.8	539159.1	6868071	-0.506	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates. The downstream area is overgrown
168A	Floodgate	1	0.45			538708	6870024	-0.209	Secondary	Private/Unknown	Good	Abbott and Macro	Structure is 1 of 2 floodgates
168A	Floodgate	1		2.4	2.1	538706.3	6870024	-0.702	Secondary	Private/Unknown	Good	Abbott and Macro	Structure is 1 of 2 floodgates, this floodgate has an old winch that is not working
168B	Floodgate	1	0.45			538520.8	6870169	1.019	Secondary	Private/Unknown	Poor	Abbott and Macro	The floodgate on this structure is completely buried in silt and debris. Th upstream invert was used
168C	Floodgate	1	0.6			538489	6870217	0.896	Secondary	Private/Unknown	Good	Abbott and Macro	Silting observed at the base of the floodgate
171	Floodgate	1	0.6			539548	6870057	-0.764	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
171	Floodgate	1		2.4	2.1	539546.1	6870057	-0.669	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
171A	Floodgate	1	0.45			539277.1	6870223	2.574	Secondary	Private/Unknown	Good	Abbott and Macro	
173	Floodgate	1	0.45			539878.4	6869960	-0.626	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates
173	Floodgate	1	1.5			539879.7	6869961	-0.268	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates
173	Floodgate	1	1.5			539881.6	6869962	-0.306	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates, this floodgate has been modified with a working tidal sluice
177	Floodgate	1		1.6	1.8	540225.7	6869985	-0.666	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
177	Floodgate	1	0.45			540227.2	6869985	-0.519	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
178	Floodgate	1	0.6			540408.2	6870131	-0.443	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
178	Floodgate	1	1.5			540407.3	6870131	-0.569	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
17C	Floodgate	1	0.6			539648.3	6866352	2.109	Secondary	Tweed Shire Council	Good	Abbott and Macro	
17D	Floodgate	1	0.45			539870.1	6866423	2.184	Secondary	Tweed Shire Council	Poor	Abbott and Macro	The floodgate flap on this structure has snapped at the hinge and needs repair
17E	Floodgate	1	0.45			539917.1	6866444	2.407	Secondary	Tweed Shire Council	Good	Abbott and Macro	
17L	Floodgate	1	1.85			540547.5	6866625	-0.487	Primary	Tweed Shire Council		Abbott and Macro	Data provided by Tweed Shire Counc
17M	Floodgate	1	0.375			540838.4	6866933	0.416	Secondary	Tweed Shire Council	Good	Abbott and Macro	
170	Floodgate	1	0.45			541415.7	6867169	2.398	Secondary	Private/Unknown	Good	Abbott and Macro	
17X	Floodgate	1	0.45			540170.3	6866599	2.616	Secondary	Tweed Shire Council	Poor	Abbott and Macro	The floodgate flap on this structure is broken and the bank is collapsing around the pipe
180	Floodgate	1	1.5			540525	6870132	-0.832	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
180	Floodgate	1	0.6			540525.8	6870132	-0.759	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
181	Floodgate	1	0.6			540867	6870433	-0.742	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition	Data source	Comment
181	Floodgate	1		1.8	1.8	540866.4	6870432	-0.806	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates, this floodgate has been modified with a working tidal sluice
187	Floodgate	1	1.5			541728.8	6870927	-0.925	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates
187	Floodgate	1	1.5			541730.4	6870929	-0.925	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates, this floodgate has been modified with a working tidal sluice
187	Floodgate	1	0.6			541727.5	6870926	-0.951	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates
189	Floodgate	1	1.5			542442.6	6871049	-0.964	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates, this floodgate has a strap attached to it by a farmer
189	Floodgate	1	0.6			542443.7	6871049	-0.948	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
18A	Floodgate	1	0.375			539643.8	6866522	0.046	Secondary	Tweed Shire Council	Good	Abbott and Macro	
190A	Floodgate	1	0.9			542577.5	6871596	-0.068	Secondary	Tweed Shire Council	Good	Abbott and Macro	
190B	Floodgate	1	0.45			542518.8	6871239	0.266	Secondary	Tweed Shire Council	Good	Abbott and Macro	
194	Floodgate	1	0.6			542928	6870992	-0.936	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 2 floodgates, corrosion observed on the floodgate flap
194	Floodgate	1		1.8	1.8	542926.9	6870994	-0.992	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
200	Floodgate	1	0.45			544136	6872151	-0.25	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 2 floodgates, both gates are silted up and not opening
200	Floodgate	1	1.5			544135.9	6872152	-0.15	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 2 floodgates, both gates are silted up and not opening
205	Floodgate	1	0.6			544779.3	6872363	-0.749	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
205	Floodgate	1		1.8	1.8	544778.4	6872364	-0.761	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates, this floodgate has been modified with a tida gate
20A	Floodgate	1	0.45			539781.2	6866577	0.146	Secondary	Tweed Shire Council	Good	Abbott and Macro	
239A	Floodgate	1	0.375			555468.6	6879979	0.362	Secondary	Tweed Shire Council	Good	Abbott and Macro	Erosion observed behind structure headwall
252A	Floodgate	1	0.45			552033.7	6881993	-0.307	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Floodgate is stuck open with silt
253A	Floodgate	1	0.45			550254.9	6881720	-0.582	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
253A	Floodgate	1	0.45			550255.6	6881720	-0.634	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 2 floodgates, this floodgate is stuck open with silt
27	Floodgate	1		2.4	1.8	542504.9	6867698	-0.36	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
27	Floodgate	1		2.4	1.8	542506.9	6867700	-0.345	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates, this floodgate has been modified with a working tidal sluice
27	Floodgate	1		2.4	1.8	542508.7	6867701	-0.359	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
27	Floodgate	1	0.6			542509.8	6867703	-0.23	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
27A	Floodgate	1	0.375			542626.4	6868621	1.218	Secondary	Tweed Shire Council	Good	Abbott and Macro	Floodgate is being held open by debris
27C	Floodgate	1	0.375			542562.4	6868458	0.587	Secondary	Tweed Shire Council	Good	Abbott and Macro	
28	Floodgate	1	0.45			542362.1	6868560	-0.232	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
28	Floodgate	1		2.4	1.8	542361.5	6868558	-0.684	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
28	Floodgate	1		2.4	1.8	542360.6	6868555	-0.681	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates, this floodgate has been modified with a working tidal sluice
28	Floodgate	1		2.4	1.8	542359.7	6868553	-0.679	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
28A	Floodgate	1	0.375			543100.7	6869257	2.867	Secondary	Tweed Shire Council	Good	Abbott and Macro	
28B	Floodgate	1	0.45			543297.6	6869472	1.601	Secondary	Tweed Shire Council	Good	Abbott and Macro	
28C	Floodgate	1	0.45			543429.7	6869537	1.357	Secondary	Tweed Shire Council	Good	Abbott and Macro	

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition	Data source	Comment
31A	Floodgate	1	0.45			544470.5	6869683	1.553	Secondary	Tweed Shire Council	Good	Abbott and Macro	
32	Floodgate	1		2.4	1.8	544600.5	6869651	-0.596	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates, this floodgate has been modified with a working tidal sluice
32	Floodgate	1		2.4	1.8	544599	6869649	-0.591	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
32	Floodgate	1		2.4	1.8	544597.6	6869646	-0.597	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
32	Floodgate	1		2.4	1.8	544596.1	6869644	-0.591	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 4 floodgates
39G	Floodgate	1	0.375			545412.7	6872625	0.289	Secondary	Tweed Shire Council	Poor	Abbott and Macro	Floodgate is stuck open with silt
39H	Floodgate	1	0.375			545446.2	6872646	0.397	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure headwall is cracked
39X	Floodgate	1	0.375			545177.8	6871989	1.109	Secondary	Tweed Shire Council	Good	Abbott and Macro	
3A	Floodgate	1	0.375			538941.8	6866044	2.755	Secondary	Tweed Shire Council	Good	Abbott and Macro	
50A	Floodgate	1	0.9			546242.9	6872765	-0.339	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
50A	Floodgate	1	0.9			546244.4	6872766	-0.347	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates
5A	Floodgate	1	0.375			539137.2	6866407	-0.44	Secondary	Tweed Shire Council	Good	Abbott and Macro	0
5B	Floodgate	1	0.225			539160.2	6866427	2.76	Secondary	Tweed Shire Council	Good	Abbott and Macro	
66A	Floodgate	1	0.45			548927.3	6873354	0.213	Secondary	Tweed Shire Council	Good	Abbott and Macro	
66R	Floodgate	1	0.45			548927	6873437	0.249	Secondary	Tweed Shire Council	Good	Abbott and Macro	
67	Floodgate	1	1.5			548992	6874119	-0.72	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates, all with working winches.
67	Floodgate	1	1.5			548992	6874117	-0.707	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates, all with working winches. This floodgate also has been modified with a working tidal sluice
67	Floodgate	1	1.5			548992	6874114	-0.739	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates, all with working winches.
71	Floodgate	1	1.5			546691.2	6872598	-0.817	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates
71	Floodgate	1	1.5			546693.3	6872598	-0.822	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates
71	Floodgate	1	1.5			546695.3	6872598	-0.784	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 3 floodgates
80	Floodgate	1		2.4	1.8	549605.7	6872287	-0.998	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 6 floodgates
80	Floodgate	1		2.4	1.8	549603.1	6872286	-0.998	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 6 floodgates
80	Floodgate	1		2.4	1.8	549600.4	6872285	-0.998	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 6 floodgates
80	Floodgate	1		2.4	1.8	549597.3	6872285	-0.998	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 6 floodgates, this floodgate has been modified with a working tidal sluice
80	Floodgate	1		2.4	1.8	549594.6	6872284	-0.998	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 6 floodgates
80	Floodgate	1		2.4	1.8	549592	6872283	-0.998	Primary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 6 floodgates
82	Floodgate	1	1.5			549882.4	6872303	-1.116	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 4 floodgates, all floodgates badly corroded below the tidal line
82	Floodgate	1	1.5			549883.5	6872301	-1.116	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 4 floodgates, all floodgates badly corroded below the tidal line
82	Floodgate	1	1.5			549884.7	6872300	-1.116	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 4 floodgates, all floodgates badly corroded below the tidal line
82	Floodgate	1	1.5			549885.9	6872298	-1.116	Secondary	Tweed Shire Council	Fair	Abbott and Macro	Structure is 1 of 4 floodgates, all floodgates badly corroded below the tidal line
83	Floodgate	1	0.45			549841.4	6872602	-0.621	Secondary	Tweed Shire Council	Good	Abbott and Macro	Structure is 1 of 2 floodgates

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition
83	Floodgate	1	0.9			549841.5	6872603	-0.792	Secondary	Tweed Shire Council	Good
14	Floodgate	1	0.9			539043.8	6865814	-0.048	Secondary	Tweed Shire Council	Good
14	Floodgate	1	0.9			539043.5	6865812	-0.05	Secondary	Tweed Shire Council	Good
14	Floodgate	1	0.9			539043.3	6865811	-0.03	Secondary	Tweed Shire Council	Good
86	Floodgate	1		2.4	2.1	550129.6	6873273	-1.075	Secondary	Tweed Shire Council	Good
86	Floodgate	1		2.4	2.1	550132.1	6873274	-1.291	Secondary	Tweed Shire Council	Good
88	Floodgate	1		2.4	2.1	550638.7	6873982	-1.25	Secondary	Tweed Shire Council	Good
88	Floodgate	1		2.4	2.1	550637.9	6873979	-1.276	Secondary	Tweed Shire Council	Good
8A	Floodgate	1	0.9			539293.5	6866478	0.574	Secondary	Tweed Shire Council	Good
8A	Floodgate	1	0.9			539294.5	6866478	0.569	Secondary	Tweed Shire Council	Good
91A	Floodgate	1	0.45			550710.3	6875188	0.18	Secondary	Tweed Shire Council	Good
92	Floodgate	1	1.5			550964.5	6875298	-1.098	Secondary	Tweed Shire Council	Fair
92	Floodgate	1	1.5			550962.2	6875297	-1.077	Secondary	Tweed Shire Council	Fair
96A	Floodgate	1	0.375			551917.1	6875351	0.598	Secondary	Tweed Shire Council	Good
UNK04	Culvert	1	0.9			538020.2	6870946	-0.152	Secondary	Private/unknown	Fair
UNK04	Culvert	1	0.9			538018.9	6870946	-0.3	Secondary	Private/unknown	Fair
UNK04	Culvert	1	0.9			538017.6	6870946	-0.245	Secondary	Private/unknown	Fair
26	Floodgate	1	1.2			539567.5	6867114	1.256	Secondary	Tweed Shire Council	Good
26	Floodgate	1	1.2			539570.1	6867114	1.197	Secondary	Tweed Shire Council	Good
26A	Floodgate	1	0.75			539557	6867117	1.938	Secondary	Tweed Shire Council	Good
26B	Floodgate	1	0.45			539519.5	6867119	2.743	Secondary	Tweed Shire Council	Good
SML1	Floodgate	1	0.225			539590.4	6866510	3.422	Secondary	Tweed Shire Council	Good
SML2	Floodgate	1	0.25			539632.5	6866534	3.616	Secondary	Private/Unknown	Good
SML3	Floodgate	1	0.3			539673.9	6866556	3.668	Secondary	Tweed Shire Council	Good
SML4	Floodgate	1	0.25			539730.3	6866583	3.832	Secondary	Tweed Shire Council	Good
SML5	Floodgate	1	0.3			539800.1	6866617	3.069	Secondary	Tweed Shire Council	Good
UNK01	Culvert	1	0.6			538920.3	6863883	0.565	Secondary	Private/unknown	Fair
UNK03	Culvert	1	0.6			538926.6	6868619	0.439	Secondary	Private/unknown	Good
UNK06	Floodgate	1		1.2	1.5	536444.8	6866479	1.942	Secondary	Private/unknown	Good
UNK06	Floodgate	1	0.9			536449.8	6866470	0.499	Secondary	Private/unknown	Good
UNK08	Culvert	1	0.9			535270.3	6865854	0.7	Secondary	Private/unknown	Good
UNK09	Floodgate	1	0.45			542906.3	6871397	-0.192	Secondary	Private/unknown	Good
UNK10	Floodgate	1	0.9			542810.3	6871389	-0.484	Secondary	Private/unknown	Good
UNK11	Floodgate	1	0.375			543087.4	6871288	0.483	Secondary	Private/unknown	Good
UNK12	Culvert	1		1	1	544141.8	6872908	-0.366	Secondary	Private/unknown	Other

Data source	Comment
Abbott and Macro	Structure is 1 of 2 floodgates, there is a
Abbott and Macro	tractor pump upstream Structure is 1 of 3 floodgates
Abbott and Macro	Structure is 1 of 3 floodgates
Abbott and Macro	Structure is 1 of 3 floodgates
Abbott and Macro	Structure is 1 of 2 floodgates, there are
	winches installed on both floodgates
Abbott and Macro	Structure is 1 of 2 floodgates, there are winches installed on both floodgates
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	
Abbott and Macro	Structure is 1 of 2 floodgates. Both floodgates have flaps in good condition but hinges in poor condition. Some erosion was observed around the headwall.
Abbott and Macro	Structure is 1 of 2 floodgates. Both floodgates have flaps in good condition but hinges in poor condition. Some erosion was observed around the headwall.
Abbott and Macro	
Abbott and Macro	Structure is 1 of 3 culverts
Abbott and Macro	Structure is 1 of 3 culverts
Abbott and Macro	Structure is 1 of 3 culverts
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	
Abbott and Macro	No floodgates observed
Abbott and Macro	No floodgates observed
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	Structure is 1 of 2 floodgates
Abbott and Macro	No floodgates observed
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	
Abbott and Macro	Structure is a culvert but a new floodgate was observed laying next to the structure, ready to be installed

Structure I D	Туре	# Culverts	Diameter (m)	Width (m)	Height (m)	Easting (m)	Northing (m)	Invert (m AHD)	Category	Tenure	Condition	
UNK13	Floodgate	1	0.9			549232	6873350	-1.021	Secondary	Private/unknown	Good	A
UNK14	Floodgate	1	0.9			549611.6	6873449	-1.085	Secondary	Private/unknown	Good	A
UNK15	Floodgate	1	0.3			548814.3	6877406	-0.12	Secondary	Private/unknown	Good	A
UNK16	Floodgate	1	0.6			548668	6877304	-0.345	Secondary	Private/unknown	Good	A
UNK17	Floodgate	1	0.9			548433.9	6877113	-0.411	Secondary	Private/unknown	Good	A
UNK18	Floodgate	1	0.6			548103.5	6876992	-0.298	Secondary	Private/unknown	Good	A
UNK19	Floodgate	1	0.375			548717.9	6877314	-0.22	Secondary	Private/unknown	Fair	A
UNK20	Floodgate	1	0.6			548697.7	6877995	-0.089	Primary	Private/unknown	Good	А
UNK21	Floodgate	1	0.375			548585.3	6877950	-0.091	Secondary	Private/unknown	Good	A
UNK22	Floodgate	1	0.45			548471	6877906	-0.45	Secondary	Private/unknown	Good	A
UNK23	Culvert	1	0.45			548036.9	6877710	-0.372	Primary	Private/unknown	Fair	А
UNK24	Floodgate	1	0.6			547854.9	6877709	-0.535	Secondary	Private/unknown	Good	А
UNK25	Culvert	1				547141.4	6877779	0	Primary	Private/unknown	Other	А
UNK26	Floodgate	1	0.9			546943.6	6877669	-0.032	Secondary	Private/unknown	Good	А
UNK27	Culvert	1	0.9			546318.4	6877751	-0.135	Secondary	Private/unknown	Fair	А
UNK30	Floodgate	1	1.2			548060.7	6882278	-0.507	Primary	Private/unknown	Poor	A
UNK30	Floodgate	1	1.2			548059.5	6882277	-0.507	Primary	Private/unknown	Poor	A
UNK31	Floodgate	1	0.75			547613.5	6881970	-0.593	Secondary	Private/unknown	Good	A
UNK31	Floodgate	1	0.75			547613.2	6881969	-0.593	Secondary	Private/unknown	Good	A
UNK32	Floodgate	1	0.6			547320.3	6881545	-0.283	Secondary	Private/unknown	Good	A
UNK33	Floodgate	1	0.275			546795.7	6881393	0.31	Primary	Private/unknown	Fair	A
UNK34	Floodgate	1	0.6			547430	6881650	-0.098	Secondary	Private/unknown	Good	A
UNK36	Floodgate	1	0.75			548974.9	6874109	-0.416	Secondary	Private/unknown	Good	A
UNK37	Floodgate	1		1.5	1.5	550004.9	6877772	-0.769	Secondary	Private/unknown	Good	A
Bray Park Weir	Weir			80		536749.85	6864570.34	1	Primary	Tweed Shire Council		
WRL_TW_16	Culvert	1	0.375			547382	6872704	1.59	Primary	Tweed Shire Council	Fair	

Table F-5 Summary of unsurveyed structures

Structure ID	Easting	Northing	Sub-catchment
500	539324.9	6866481	Commercial Road
501	539067.8	6866347	Commercial Road
3B	538614.3	6866012	Commercial Road

Data source	Comment		
Abbott and Macro			
Abbott and Macro	Floodgate is very overgrown with grass		
Abbott and Macro			
Abbott and Macro	Bad erosion observed around the structure, however it is not stopping the tide		
Abbott and Macro			
Abbott and Macro			
Abbott and Macro			
Abbott and Macro	No floodgates observed		
Abbott and Macro			
Abbott and Macro	No floodgates observed, pipe is buried		
Abbott and Macro			
Abbott and Macro	No floodgates observed		
Abbott and Macro	Structure is 1 of 2 floodgates, both are rusty and need repair		
Abbott and Macro	Structure is 1 of 2 floodgates, both are rusty and need repair		
Abbott and Macro	Structure is 1 of 2 floodgates		
Abbott and Macro	Structure is 1 of 2 floodgates		
Abbott and Macro			
Abbott and Macro	Floodgate is blocked and stuck open		
Abbott and Macro			
Abbott and Macro			
Abbott and Macro			
WRL 2017			
WRL 2017	Culvert is under a road		

Comment	
Not inspected	
Not inspected	
Not inspected	

Appendix G Cross-sections

During field investigations, floodplain drainage channels and waterways were surveyed opportunistically. Measurements were taken using Trimble GNSS RTK survey equipment as specified in Appendix A of the Methods report (Rayner et al., 2023). Locations of cross-sectional measurements surveyed across the Tweed River floodplain are shown in Figure G-1. All sections were surveyed from left bank to right bank (when looking downstream). Table G-1 provides the start and end coordinates for each cross-section, and individual cross-section profiles are shown from Figure G-2 to Figure G-42.

0 Cross-section ID and approximate location

Figure G-1: General location of cross-sections surveyed on the Tweed River floodplain

Cross-	Coordinates (GDA 1994 MGA 56)					
section ID	Start Easting (m)	Start Northing (m)	End Easting (m)	End Northing (m)		
1	552516.8	6878558.9	552540.0	6878563.4		
2	547299.2	6877892.2	547280.2	6877894.1		
3	547276.5	6877883.8	547270.1	6877869.8		
4	545518.5	6872958.5	545516.8	6872992.8		
5	545202.7	6872759.6	545166.6	6872781.7		
6	545154.0	6872701.0	545136.4	6872729.2		
7	542682.2	6870253.3	542692.8	6870235.5		
8	540291.0	6871724.3	540289.1	6871709.8		
9	539665.8	6869319.1	539687.3	6869308.3		
10	540216.2	6869554.3	540214.8	6869545.0		
11	540224.3	6869551.1	540237.7	6869549.0		
12	537534.0	6868233.9	537523.8	6868246.3		
13	538011.0	6865486.8	538030.7	6865484.7		
14	538720.4	6865241.2	538733.5	6865243.4		
15	539619.1	6865086.7	539610.4	6865081.2		
16	539629.3	6865064.0	539618.9	6865080.4		
17	540343.4	6864945.9	540362.7	6864942.6		
18	540346.1	6864979.2	540357.3	6864990.5		
19	540046.7	6865826.5	540059.8	6865824.2		
20	540028.8	6865846.8	540025.6	6865834.2		
21	541453.9	6865614.2	541467.3	6865613.5		
23	541455.7	6865551.4	541453.5	6865544.3		
24	542053.0	6865435.0	542034.4	6865434.9		
25	543994.9	6867003.3	544007.4	6867001.0		
26	544019.8	6866998.3	544022.2	6867014.5		
27	543851.1	6867285.7	543870.7	6867290.5		
28	543174.3	6867457.9	543177.3	6867473.3		
29	542720.1	6867517.7	542743.9	6867513.1		
30	542763.9	6867529.4	542766.8	6867551.5		
31	543852.1	6868993.6	543866.7	6868993.7		
32	545365.4	6869104.7	545385.3	6869101.8		
33	545399.7	6869118.5	545401.3	6869133.4		
34	545353.4	6869126.6	545360.2	6869143.8		
35	545810.8	6871048.2	545810.9	6871077.8		
36	545915.1	6871365.0	545904.3	6871366.7		
37	545903.1	6871395.9	545900.5	6871380.7		
176	541235.4	6871962.6	541244.3	6871961.8		
177	541251.4	6871985.6	541252.5	6871967.1		
178	538925.6	6863887.0	538924.4	6863875.1		
179	536780.4	6867326.6	536772.2	6867328.0		
180	536761.9	6867325.1	536761.8	6867318.7		

Table G-1: Coordinates for the start and end of each cross-sections profile

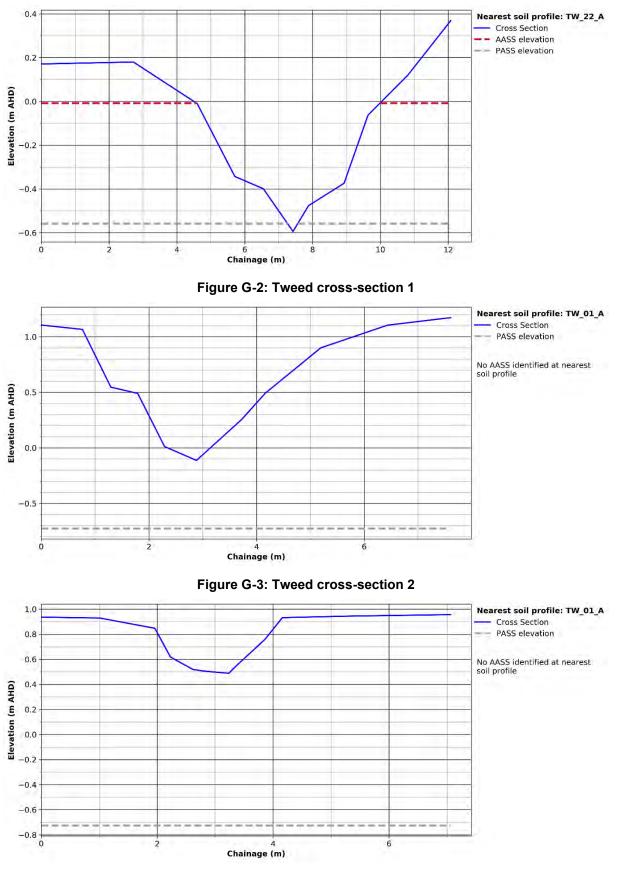


Figure G-4: Tweed cross-section 3

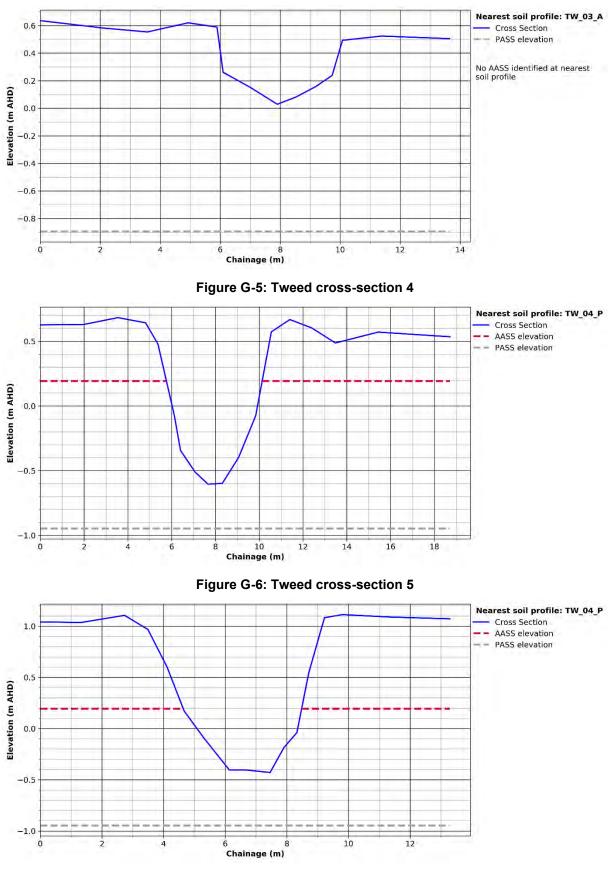


Figure G-7: Tweed cross-section 6

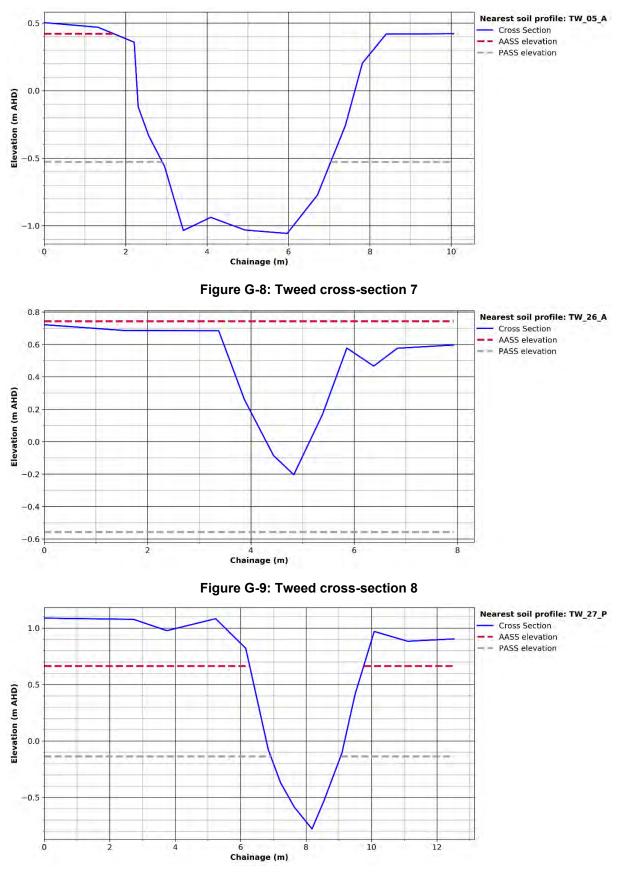


Figure G-10: Tweed cross-section 9

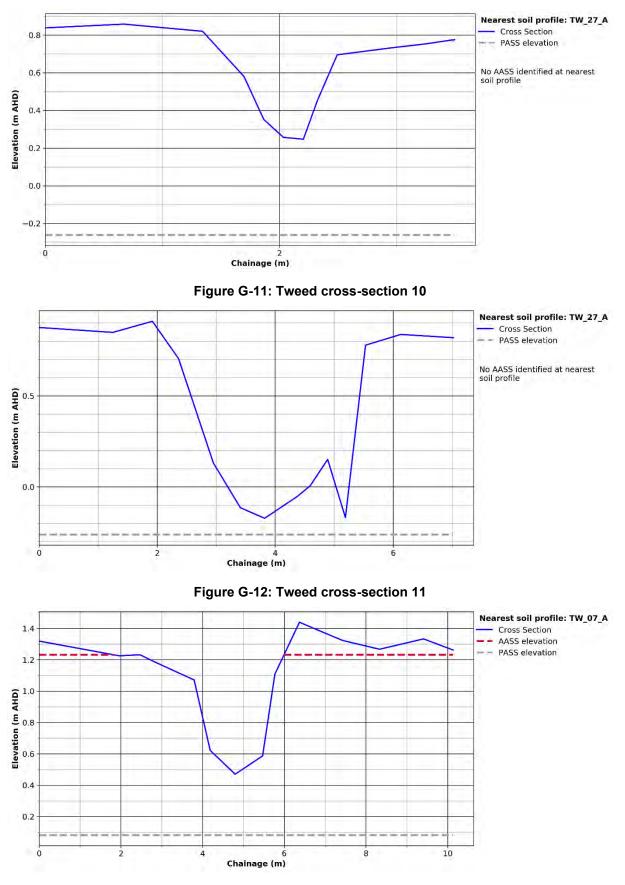
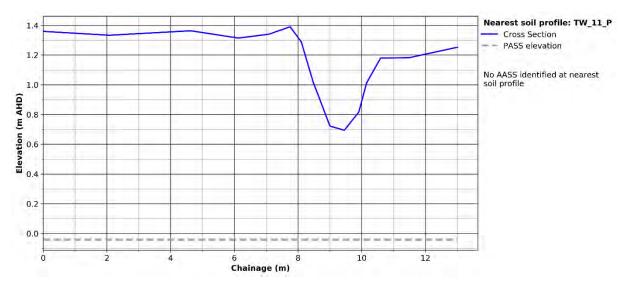



Figure G-13: Tweed cross-section 12

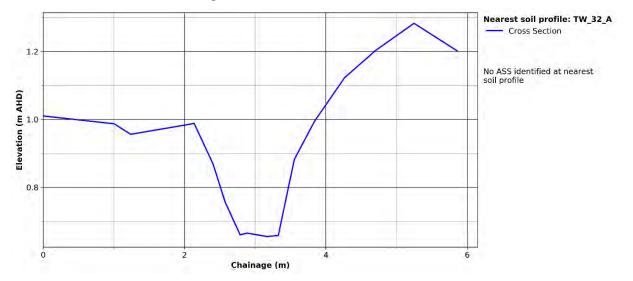


Figure G-15: Tweed cross-section 14

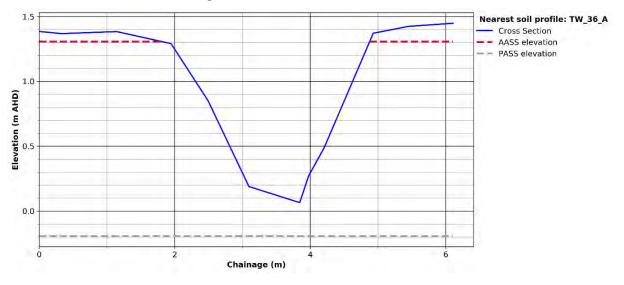
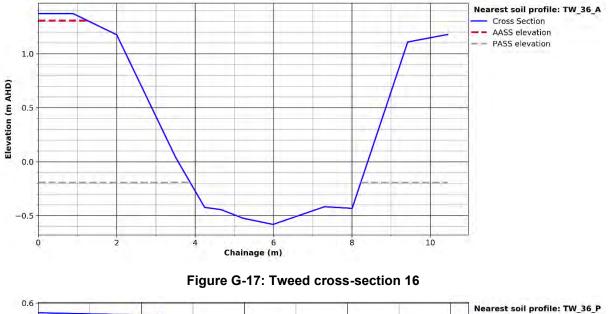



Figure G-16: Tweed cross-section 15

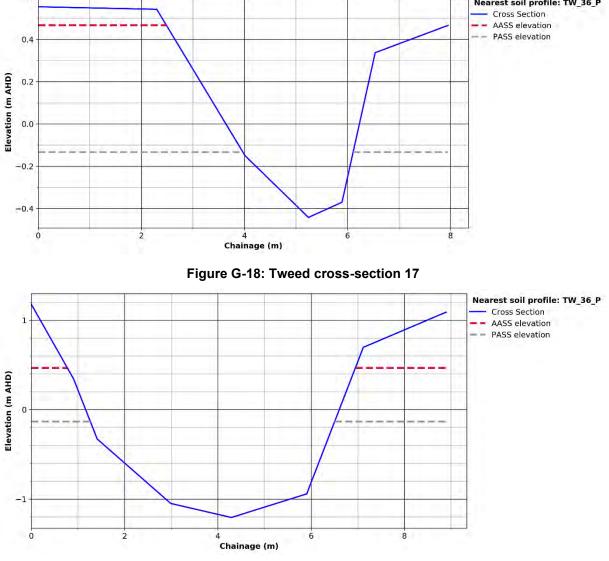


Figure G-19: Tweed cross-section 18

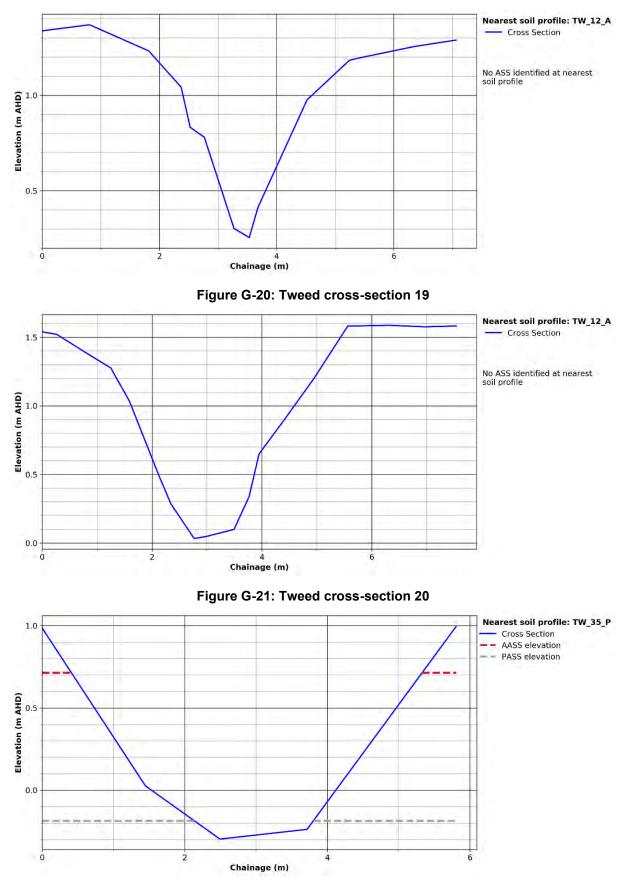
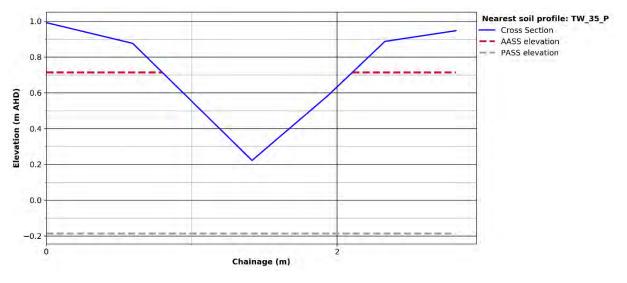
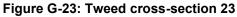
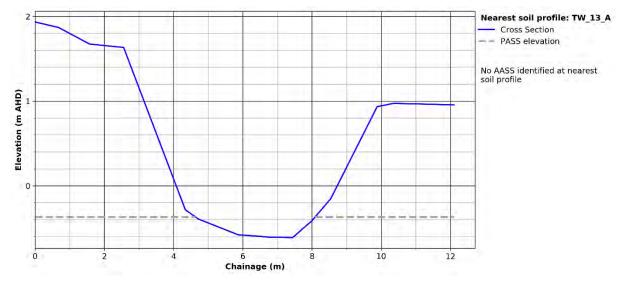
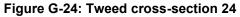






Figure G-22: Tweed cross-section 21

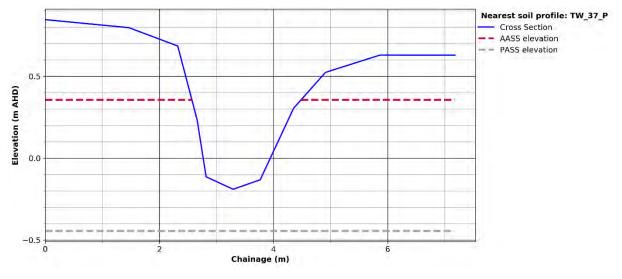
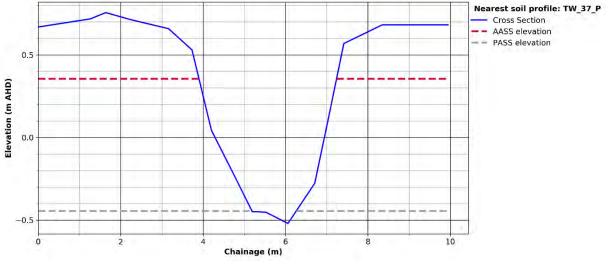
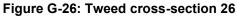
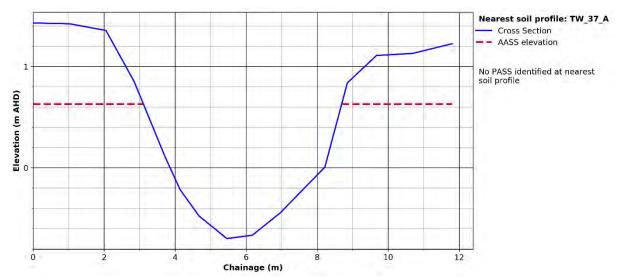
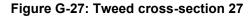






Figure G-25: Tweed cross-section 25

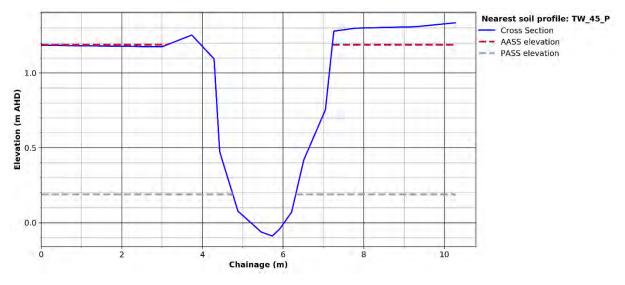
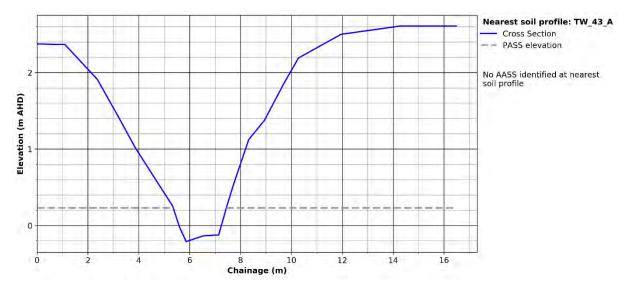
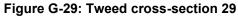




Figure G-28: Tweed cross-section 28

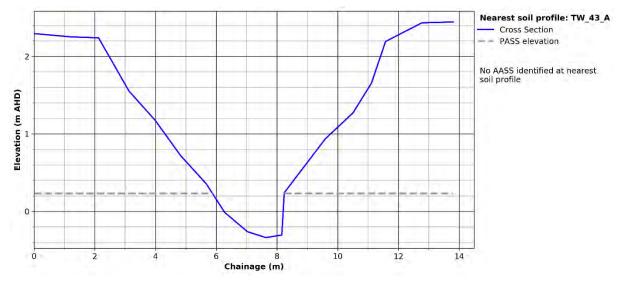


Figure G-30: Tweed cross-section 30

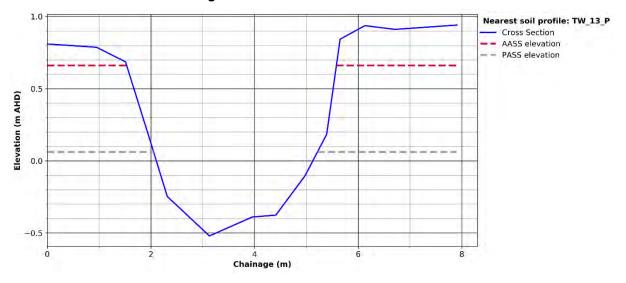
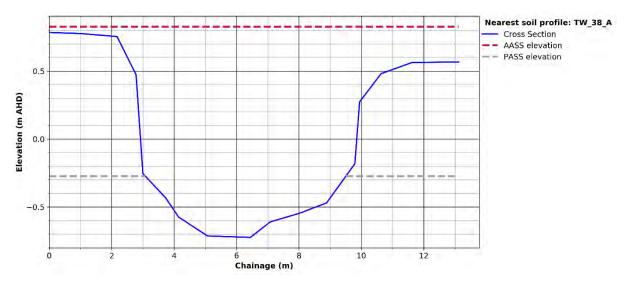
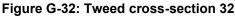
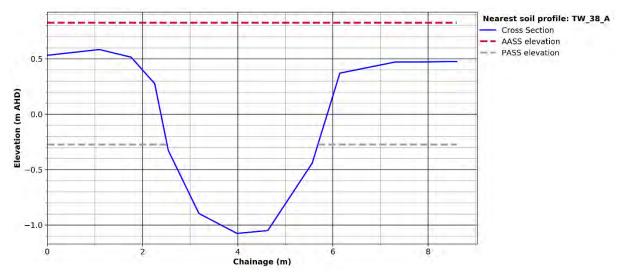
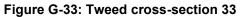






Figure G-31: Tweed cross-section 31

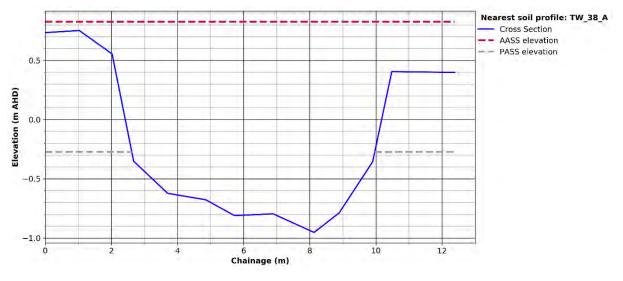
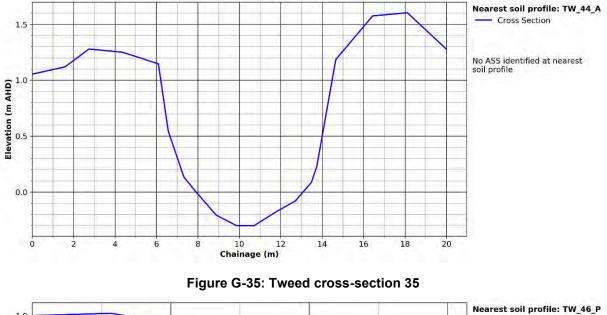
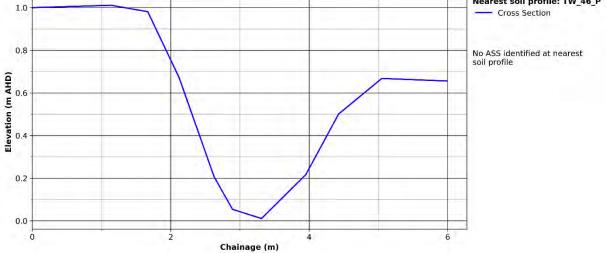
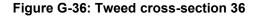





Figure G-34: Tweed cross-section 34

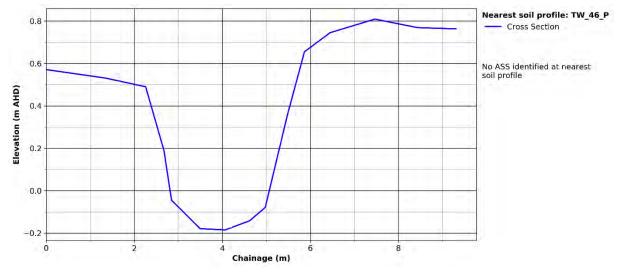


Figure G-37: Tweed cross-section 37

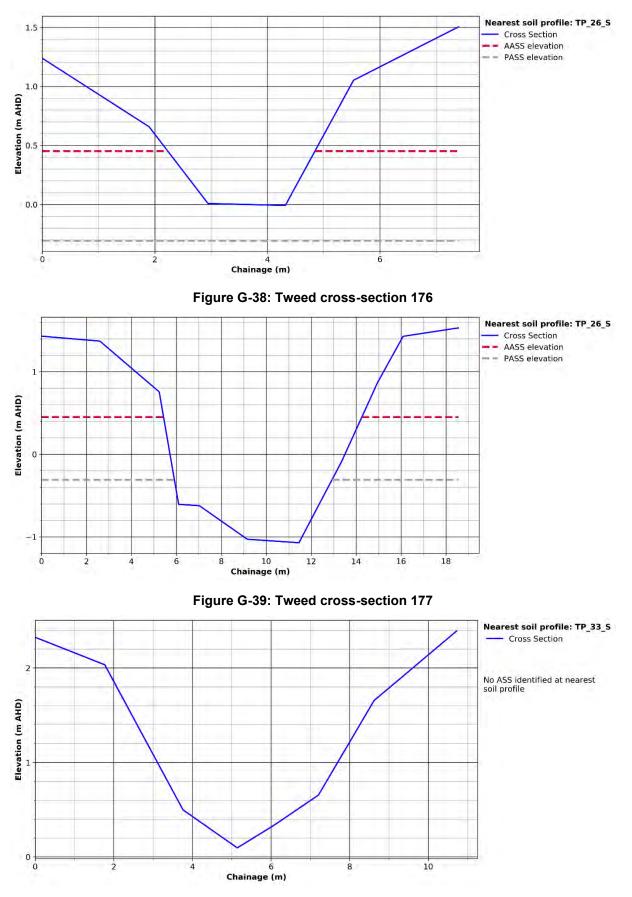
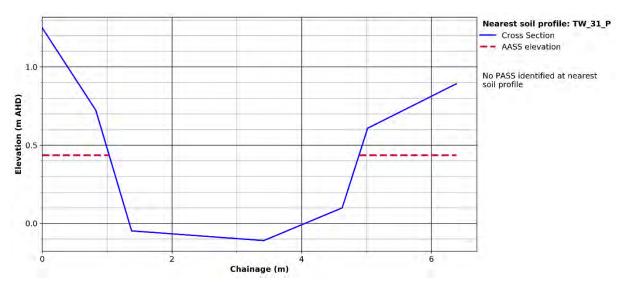



Figure G-40: Tweed cross-section 178

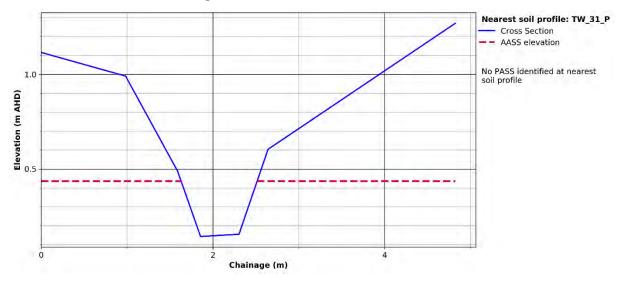


Figure G-42: Tweed cross-section 180

Appendix H Water quality

H1 Preamble

Water quality information provides an indication of the overall health of an estuary and the marine estate. The following section outlines:

- The water quality objectives for the Tweed River estuary which are used to assess estuarine health of the marine estate;
- A literature review compiling and summarising historic water quality measurement data; and
- Water quality collected during this study.

The Tweed River estuary and its tributaries have been extensively monitored using a number of water quality parameters and often in an ad-hoc manner. Monitoring has typically focused on spot checks of water quality at various locations across the estuary, with some targeted monitoring programs being implemented. For the purpose of this study, a focus has been given to surface and groundwater physical-chemical parameters associated with the disturbance of acid sulfate sols (ASS) and low dissolved oxygen blackwater. Key water quality parameters that relate to these processes are; pH, electric conductivity (EC), nutrients (e.g. nitrogen and phosphorus), dissolved oxygen (DO) and metals (e.g. aluminium and iron).

H2 Tweed River water quality objectives

In 2006, water quality objectives (WQOs) were developed for the Tweed River catchment by the NSW Department of Planning, Industry and Environment (DPIE, formerly the Department of Environment, Climate Change and Water). The goal of the WQOs are to set out community values and uses for waterways and to provide a range of water quality indicators to assess the condition of these values and uses (DPIE, 2006). Trigger levels for the water quality indicators within the WQOs are based on the Australian and New Zealand guidelines for fresh and estuarine waters (ANZG, 2018, formerly ANZECC 2000) and the Australian Drinking Water Guidelines (NHMRC, 2011). WQOs have been identified for uncontrolled streams, estuaries and waterways affected by urban development within the study area for the Tweed River estuary and include objectives for the protection of:

- Aquatic ecosystems;
- Visual amenity;
- Primary and secondary contact recreation;
- Aquatic foods (cooked);
- Livestock, irrigation and homestead water supply; and
- Drinking water at point of supply (disinfection only, clarification and disinfection, and groundwater)

Table H-1 outlines key trigger levels for stressors applicable to the Tweed River estuary for each of the WQOs. Trigger levels (and their associated WQOs) have only been presented for dissolved oxygen, pH, electrical conductivity and nutrients due to their relevance to this study. Trigger levels for metals (e.g. iron and aluminium) are dependent upon different ecosystem conditions and could vary throughout

the estuary. For a complete list of trigger values consult the ANZ guidelines (ANZG, 2018) and the Australian Drinking Water Guidelines (NHMRC, 2011).

Protection of aquatic ecosystems is governed by the trigger levels for dissolved oxygen, pH and nutrients. For estuaries and waterways affected by urban development no guidance is provided for electrical conductivity values as it is expected that high values will occur due to the continuous flushing of these waters by sea water. Trigger levels for electrical conductivity were provided for uncontrolled streams which are freshwater and upstream of the estuary.

			,		
WQOs	Dissolved oxygen (% saturation)	рН	Electrical conductivity (μS/cm)	Total nitrogen (μg/L)	Total phosphorus (μg/L)
Aquatic ecosystems	80 - 110	7.0 - 8.5	Not applicable	300	30
Primary contact recreation	Not specified	5.0 - 9	Not applicable	Not specified	Not specified
Livestock water supply	Not specified	Not specified	0 – 3,350 (varies for different livestock)	Not specified	Not specified
Irrigation water supply	Not specified	Not specified	< 950 - >12,200 (varies for different crop)	Not specified	Not specified
Homestead water supply	Not specified	6.5 - 8.5	<1,000	Not specified	Not specified
Drinking water (treated)	> 80	6.5 – 8.5	<1,500	Not specified	Not specified

Table H-1: Water quality objective trigger levels

H3 Existing floodplain water quality data

H3.1 Summary

This study has focused on identifying water quality information that provides information on sources and impacts of blackwater (caused through deoxygenation) and acid sulfate soils within the Tweed River floodplain. Table H-2 provides a detailed summary of historic water quality investigations including monitoring dates, monitoring locations, parameters measured and a brief summary of the study findings. Note, in addition to this summary, reviews of existing water quality data have been completed by Tulau (1999), Makings and Pratt (2016) and Pratt (2017).

H3.2 Blackwater

Water quality measurements for nutrients (usually nitrogen and phosphorus) and dissolved oxygen can be used as an indicator for blackwater which results when oxygen is stripped from the water column usually via biological means (which can occur as a result of the breakdown of organic matter caused by eutrophication or prolonged inundation of water intolerant vegetation) or chemical means (as occurs when monosulfidic black ooze (MBO) is mobilised or acid sulfate soils are oxidised). Note, the blackwater prioritisation has focused on the biological cause of blackwater specifically through prolonged inundation of water on floodplains resulting in the die off and decomposition of organic matter which causes water to become 'hypoxic', whereby dissolved oxygen is consumed from a water body at a greater rate than they can be replenished. Alternative causes for blackwater have been assessed in literature and are discussed in this section. These include nutrient loading of waterways which causes eutrophication, which can lead to blackwater (in a mechanism similar to prolonged inundation) as biological matter breaks down, and also chemical causes of blackwater whereby minerals oxidise during chemical reactions stripping oxygen from the water column.

Numerous studies have measured dissolved oxygen levels and/or nutrient levels throughout the Tweed River estuary. The SPCC (1985) found that nutrient loading resulting from effluent discharge was a key stressor for Cobaki and Teranora Creeks and would need to be managed to ensure activities like dredging did not result in blackwater. This study also discovered that within canal estates there was clear stratification with lower dissolved oxygen levels at depths. Manly Hydraulics Laboratory (1997) observed that following rainfall events the dissolved oxygen level within floodplain waterways tended to drop at the same time pH levels dropped. It was unclear whether this was due to runoff resulting in a greater nutrient load in the waterways or the increased chemical demand of oxygen caused during the creation of acid. Pratt (2017) also observed low dissolved oxygen levels in the estuary specifically within the Rous River, however, their findings concluded that this resulted from nutrient loads and runoff from farmland. They also found that the dissolved oxygen levels in the estuary had, on average, decreased in comparison to previous monitoring rounds (conducted in five (5) year blocks). Since 2018, dissolved oxygen saturation levels were found to be between 80% and 110% (NSW DPIE, 2019). This is within the required levels needed to support aquatic ecosystems as outlined in the water quality objectives (DPIE, 2006; NSW DPIE, 2019).

H3.3 Acid sulfate soils

The oxidisation of acid sulfate soils (ASS) results in the development of acid which can be transported via groundwater to nearby waterways resulting in acidic water with a low pH. To understand the impact of ASS within the Tweed River estuary, a number of studies have measured water acidity (pH). The discharge of acidic waster following large runoff events in the Tweed River estuary has been observed by numerous studies and investigations (Wilson, 1995; Willett et al., 1993; White et al., 1993; Lin et al., 1998). A number of these studies also observed that saline tidal water within the estuary had capacity to act as a natural buffer to acidic water. Following prolonged dry periods, water quality in agricultural drains would often become neutral, particularly if one-way floodgates connecting them to the estuary leaked (Wilson, 1995; White et al., 1993; Lin et al., 1998). It was found that the pH and electrical conductivity (a measure of salinity) at different locations within the estuary were highly variable and dependant on rainfall events which, when occurred, resulted in higher acidity levels and lower salinity levels. Indeed, recent spot check measurements for acidity in 2018 and 2019 did not find any acidic water (NSW DPIE, 2019), potentially due to prolonged drought conditions during this period.

Table H-2: Existing water quality data for the Tweed River floodplain

Study	Sampling dates	Location	Parameters	Findings
SPCC (1985)	27/01/1983, 31/10/1983, 17-19/01/1984	Tweed River Rous River Terranora Creek Cobaki Creek	pH, salinity, Temperature, dissolved oxygen, total suspended solids, chlorophyll a, nitrogen, phosphorus	pH was consistently measured between 7. Nutrient levels in Terranora and Cobaki Cr deoxygenation of water. Dredging activities Stratification was identified within canal es
PWD (1991)	14 – 22/10/1987	Tweed River estuary	рН	It was observed that fish kills resulted from during acid sulfate soil oxidisation caused Low pH levels were observed at Kynnumb Stotts Creek.
Willett et al. (1993)	February 1990, November 1991	Stotts Creek (referred to as Macleods Creek in the study)	pH, chloride, sulfate, iron, aluminium	Pumping of water from drained farmland b of acid sulfate soils. Following wet events oxidised acid sulfate aluminium concentrations were exported to
White et al. (1993)	November 1990 to 1993	Stotts Creek (referred to as McLeods Creek in the study)	pH, dissolved oxygen, electrical conductivity, temperature	Following heavy rainfall causing discharge During dry spells the pH was neutral (appr water from the estuary to buffer acid and li
Wilson (1995)	2/05/1992 to 20/05/1993	Stotts Creek (referred to as McLeods Creek in the study)	pH, dissolved oxygen, electrical conductivity, temperature.	Changes in water quality were dependent duration. Measurements indicated buffering of acidit
Lin et al. (1995)	March 1993	Stotts Creek (referred to as McLeods Creek in the study)	рН	Acidic pulses resulted from runoff on drain Saline water from the estuary acts as a na Following a rainfall event there was a sign
MHL (1997)	17/11/1994 to 31/07/1996	Tumbulgum/Eviron Stotts Creek	Electrical conductivity (salinity), pH, temperature, dissolved oxygen	Rainfall events that result in a rise in the w Dissolved oxygen levels drop significantly increased biological oxygen demand or ch
Yang (1997)	Not specified	Stotts Creek (referred to as McLeods Creek in the study)	Not specified	It was observed that leaking floodgates that neutralisation of acid. It was observed that low oxygen levels and
WBM Oceanics Australia (1997)	Not specified	Tweed River estuary	Faecal coliforms, nitrogen, phosphorus, suspended solids, chlorophyll a, dissolved oxygen, pH	Contains a review of water quality data col Protection Authority. There were high nutrient levels recorded in deoxygenation of the waterways.
Lin et al. (1998)	16/12/1991, 23/11/1991, 14/01/1993, 28/02/1993 to 26/03/1993	Stotts Creek (referred to as McLeods Creek in the study)	рН	Pulses of acidic discharge into the creek o across the creek banks where acid sulfate A dry period followed by rainfall resulted in There was evidence of saline tidal water b
Tulau (1999)	Not applicable	Tweed River estuary	Not applicable	Contains a literature review including multi Multiple studies identified Stotts Creek as Studies assessing water quality and specifi WBM Oceanics Australia, the Public Work The NSW Sugar Milling Cooperative carrier following heavy rainfall events. There was clear evidence that acid from S indicating that the Tweed River has a relat of the channel.
Eyre and Pepperell (1999)	5/09/1997 to 7/09/1997	Rous River	Nitrogen, phosphorus, chlorophyll a, faecal coliforms, turbidity, pH, dissolved oxygen, temperature, electrical conductivity/salinity	It was found that cane land resulted in elev

Tweed River Floodplain Prioritisation Study, WRL TR 2020/04, June 2023

7.3 and 8.2 at all sites.

- Creeks due to effluent disposal have potential to cause ties could further exacerbate this.
- estates with oxygen depletion increasing with depth. om iron and aluminium being released to waterways
- ed by drainage. mboon, Tygalgah, South Murwillumbah, Dulguigan and
- behind floodgates during dry periods caused oxidisation
- te soil products including acidic water with high I to the estuary.
- ges greater then 1m³/s pH levels dropped from 7 to 4. pproximately 7) due to floodgates leaking allowing saline
- l limited export of acid from the groundwater.
- nt on rainfall events and proportionate to their size and
- dic water with saline water occurred.
- ain banks where acid sulfate soils were exposed.
- natural buffer to acidic water.
- gnificant drop in pH (from 6 to 4) upstream of floodgates. water level result in a drop in pH.
- y when pH drops. This could be caused from either
- chemical demand from oxidisation of iron ions.
- that supplied tidal water to drains resulted in
- and high acidity occurred behind floodgates. collected by Tweed Shire Council and the Environment
- I in the estuary that could lead to eutrophication and
- c occurred following most rainfall events due to runoff the soils were exposed.
- in pH dropping from 7 to 4 behind floodgates.
- [•] buffering acidic discharge.
- ultiple datasets that are not publicly available. s an acid hot spot.
- cifically acidity in Stotts Creek have been completed by
- rks Department and Patterson Britton and Partners.
- ries out regular water quality monitoring in union drains
- Stotts Creek lowered the acidity in Stotts Channel latively low neutralisation capacity despite regular flushing
- levated values for nutrients and lower values for acidity.

Study	Sampling dates	Location	Parameters	Findings
				Correlation between nitrogen concentration a stimulating biological growth. A decrease in a that biodegrading organic matter was strippin
Wilson et al. (1999)	2/02/1992 to 29/01/1994	Stotts Creek (referred to as McLeods Creek in the study)	pH, electrical conductivity, dissolved oxygen, temperature	A neutral pH (7.5) was recorded when the wa When there was a high water table the pH de Small diurnal changes in both pH and electric
Green (2005)	2001 to 2002	Stotts Creek (referred to as McLeods Creek in the study);	Electrical conductivity, pH, temperature, cations, anions, organic carbon, dissolved oxygen, redox potential, alkalinity	It was found that hydrolysis of dissolved meta measurements can underpredict the actual a pH measurements only contributed to 30% o Minimum pH measurements in waterways w event.
Genn (2009)	12/09/1991 to 13/12/1991; 22/10/2007 to not specified	Cobaki	Nitrogen, phosphorus, turbidity	Presents historic water quality monitoring col On average the phosphorus levels were reco Nitrogen levels have increased since historic levels.
IWC (2009)	November 2007 to October 2008	Cobaki Terranora	Turbidity, salinity, total suspended solids, dissolved oxygen, pH, nitrogen, phosphorus, chlorophyll a.	No acid was measured during the sampling p Mixing resulted in less variability in dissolved when compared to the upper estuary.
Holloway et al. (2010)	26/10/2007 to 30/10/2007	Cobaki Terranora	Salinity, dissolved oxygen, total suspended solids, chlorophyll a, nitrogen, phosphorus	There are consistently low levels of dissolved Higher levels of nitrogen and phosphorus we
Roper et al. (2010)	1970 to 2009	Tweed River	Salinity, temperature, dissolved oxygen, pH, Secchi depth, turbidity, chlorophyll a, total suspended solids, nitrogen, phosphorus, silicon	Out of 101 NSW estuaries assessed for cond (along with 38% of estuaries, 27% were 'very Out of 184 NSW estuaries assessed for susc River was given a 'high' rating (along with 6%
Ferguson (2012)	2007 to 2011	Tweed River estuary	Temperature, salinity, pH, nitrogen, phosphorus, chlorophyll a, total suspended solids, Secchi depth, dissolved oxygen,	Protrusion of salinity was observed up the es Dulguigan on the Rous River and through to Measurements of pH indicated that acid sulfa Lower dissolved oxygen measurements were to be driven by residence times resulting in in
Makings and Pratt (2016)	1996 to 2017	Tweed River estuary	Not applicable	 Contains a review of water quality monitoring including data that is not publicly available. 80% of the estuary was ranked as poor to veroxygen contributing to this ranking. Runoff from farmland was attributed with high Stormwater often accounted for variations of Key water quality problems result from acid son utrient loads in the mid to upper estuary. Floods are one of the key drivers for low dissons Hypoxia was observed to be caused in the mid for ward of the mid to upper estuary.
Pratt (2017)	January 2012 to November 2016	Tweed River Rous River	pH, salinity, temperature, dissolved oxygen, total suspended solids, Secchi depth, biological oxygen demand, colour, chlorophyll a, nitrogen, phosphorus, coliforms, enterococci	Impacts of acid sulfate soil runoff was observed Rous River, however, these impacts had imp program. Low dissolved oxygen was observed in the n however, these impacts had improved from a dissolved oxygen in the estuary is linked to h Salinity in the upper estuary is impacted by e

ion and chlorophyll a indicated that nitrogen was in dissolved oxygen with chlorophyll a also indicated ipping oxygen from the water.

he water table was below unoxidized acid sulfate soils. H decreased becoming acidic (pH ~3.5).

ectrical conductivity were measured during dry periods. metals can contribute to acidity meaning pH ual acidity.

% of the overall acidity.

vs were observed within a few hours following a rainfall

g collected by WBM Oceanics Australia. recorded above ANZECC guideline levels.

toric monitoring and are now above ANZECC guideline

ing period with pH levels between 7 and 9. Ived oxygen measurements within the lower estuary

blved oxygen particularly in the estuarine creeks. s were observed as a result of sediment resuspension. condition the Tweed River was given a 'good' rating 'very good').

susceptibility to environmental pressures the Tweed h 6% of all estuaries, no estuaries were 'very high'). e estuary to the Bray Park Weir on the Tweed River, to

h to Cobaki – Terranora systems. sulfate soils had a greater influence in the Rous River.

were observed in the mid to upper estuary and appeared in increased biological matter.

oring completed in the Tweed Estuary from 1996 to 2007 le.

o very poor with low pH, high nutrients and low dissolved

high nutrient loads which can cause eutrophication. Is of up to 90% in water quality within the lower estuary. cid sulfate soils in the mid and lower estuary and from /.

dissolved oxygen, low pH and high levels of nutrients. ne mid to upper estuary during periods of low to medium by oxygen demand from enriched organic matter. served in the mid to upper estuary and specifically in the

improved from a the previous 5 year monitoring

he mid estuary and specifically in the Rous River, om a the previous 5 year monitoring program. Low to high nutrient loads and runoff from rural land. by environmental flows during dry periods.

Acid hot spots were identified upstream of
Canal, Condong Creek, Blacks Drain and
Following a flood event low dissolved oxyg
oxygen, temperature organic material.
Tidal influence was observed in the electric
following a runoff event.
Average salinity was recorded as 30.5ppt
35ppt.
conductivity (salinity), turbidity, Salinity measured in the mid to upper estu
horus, pH, CDOM, fDOM, pH measurements varied from 7.1 to 7.8 (
silicon Dissolved oxygen varied from 81.1% to 10

of Dulguigan Creek, on the north side of Main Trust nd the floodplain between Bray Park and Murwillumbah. xygen was thought to be associated with the breakdown of

ctrical conductivity levels in the mid-estuary immediately

pt with a 10th percentile of 23ppt and 90th percentile of

stuary varied from 1ppt to 24ppt; 8 (only measured in 2018 and 2019); 108.8% (only measured in 2018 and 2019).

H4 Field investigations

During field investigations, surface water and groundwater water quality measurements were opportunistically collected at various locations across the Tweed River floodplain. Water quality parameters measured included pH and electrical conductivity (EC). Details on the instrumentation used to measure water quality parameters can be found in Appendix A of the Methods report (Rayner et al., 2023).

Water quality data was collected during structure surveys (surface water quality upstream of the structures) and soil profile sampling (surface water quality of nearby waterways and groundwater quality within the soil sample holes). Water quality measurements taken during structure surveys upstream of the structures are summarised in Table H-3. Surface water quality measurements taken from nearby water bodies during soil profile sampling are summarised in Table H-4. Groundwater quality measurements taken during soil profile sampling are summarised in Table H-5. This data has also been spatially represented to show the variability of pH and electrical conductivity across the Tweed River floodplain. Surface water quality measurements for the Tweed River floodplain are presented in Figure H-1 and Figure H-2 for pH and electrical conductivity, respectively. Groundwater quality measurements for the Tweed River floodplain are presented in Figure H-4 for pH and electrical conductivity, respectively.

Nearby structure ID	Date Easting (m)		Northing (m)	рН	Electrical conductivity (µS/cm)	
WRL_TW_12	7/11/2019	541459	6865616	6.7	1,300	

Table H-3 Summary of surface water quality measurements taken upstream of structures

Table H-4: Summary of surface water quality measurements taken in waterbodies near soil
profile sample holes

Nearby soil profile ID	Date	Easting (m)	Northing (m)	рН	Electrical conductivity (μS/cm)	Notes
						-
TW_45_P	15/10/2019	543189	6867459	5.0	11,876	
TW_44_A	16/10/2019	545813	6871054	7.1	36,046	
TW_26_A	17/10/2019	540293	6871722	5.7	4,467	
TW_27_A	18/10/2019	540216	6869552	7.1	20,751	
TW_05_A	21/10/2019	542691	6870240	6.0	28,213	
TW_13_P	22/10/2019	543856	6869002	6.9	36,551	
TW_10_A	23/10/2019	538121	6865604	3.8	3,162	Measured in nearby creek

Nearby soil profile ID	Date	Easting (m)	Northing (m)	рН	Electrical conductivity (µS/cm)	Notes
TW_10_A	23/10/2019	538147	6865621	6.3	250	Measured in nearby dam
TW_32_A	23/10/2019	538725	6865243	6.3	24,591	
TW_07_A	24/10/2019	537527	6868236	7.1	5,814	
TW_01_A	25/10/2019	547287	6877933	7.7	66,201	
TW_36_A	7/11/2019	539625	6865082	7.1	31,203	
TW_12_A	8/11/2019	540028	6865837	7.8	1,500	
TW_36_P	8/11/2019	540355	6864934	6.9	23,000	Measured in Black Drain
TP_33_S	24/02/2020	538983	6863862	6.3	1,196	
TW_31_P	24/02/2020	536773	6867338	6.0	343	
TP_26_S	24/02/2020	541256	6871951	3.5	346	

Table H-5: Summary of groundwater quality measurements taken from soil sample holes

Soil profile ID	Date	Easting (m)	Northing (m)	рН	Electrical conductivity (µS/cm)
TW_43_P	15/10/2019	548377	6871745	6.5	6,348
TW_05_P	16/10/2019	544820	6871473	6.1	7,215
TW_38_A	16/10/2019	545359	6869127	6.5	3,431
TW_42_A	16/10/2019	547652	6871886	6.4	4,658
TW_03_A	17/10/2019	545523	6872959	5.7	14,176
TW_04_P	17/10/2019	545156	6872789	5.9	11,866
TW_46_P	17/10/2019	545906	6871367	6.3	5,556
TW_27_A	18/10/2019	540216	6869551	5.0	3,547
TW_27_P	18/10/2019	539681	6869309	6.8	2,452
TW_37_A	19/10/2019	543850	6867300	4.0	1,189
TW_13_P	22/10/2019	543856	6869002	6.7	3,737
TW_37_P	22/10/2019	544021	6867004	6.9	3,915
TW_10_A	23/10/2019	538148	6865633	6.1	618
TW_32_A	23/10/2019	538725	6865243	6.3	1,757
TW_07_A	24/10/2019	537527	6868236	6.8	2,009
TW_01_A	25/10/2019	547287	6877933	5.9	13,520
TW_35_P	7/11/2019	541453	6865542	5.6	3,600
TW_13_A	8/11/2019	542040	6865446	6.4	1,520
TW_12_A	8/11/2019	540028	6865837	6.4	1,835
TP_33_S	24/02/2020	538983	6863862	5.6	387
TW_31_P	24/02/2020	536773	6867338	5.1	1,646
TP_26_S	24/02/2020	541256	6871951	3.6	1,412

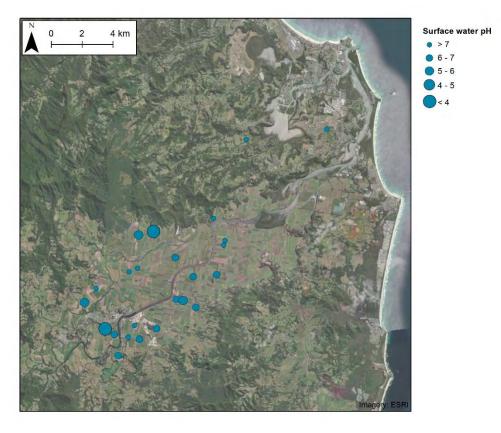
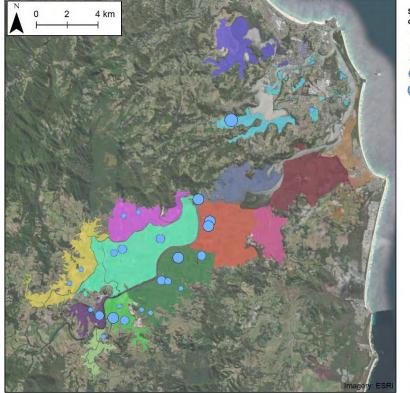



Figure H-1: Surface water pH measurements taken across the Tweed River floodplain

Surface water electrical conductivity (μS/cm) < 10,000
10,000 20,000 30,000 > 40,000

Figure H-2: Surface water electrical conductivity measurements taken across the Tweed River floodplain

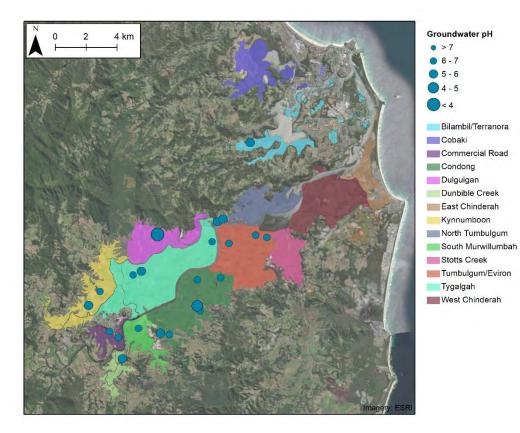


Figure H-3: Groundwater pH measurements taken across the Tweed River floodplain

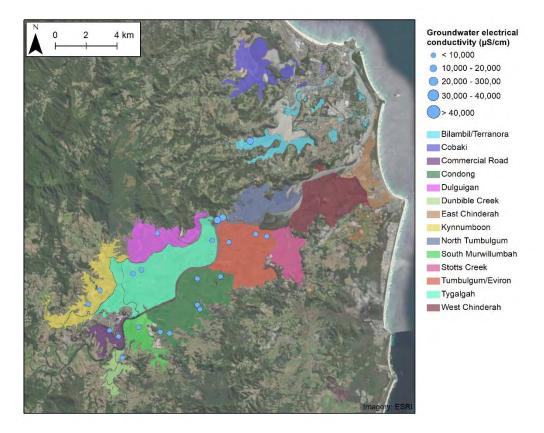


Figure H-4: Groundwater electrical conductivity measurements taken across the Tweed River floodplain

I1 Preamble

The following section provides a summary of the hydrodynamic numerical model developed for the Tweed River estuary. Results of the hydrodynamic modelling were used for the floodplain vulnerability assessments, detailed in Section 11 of the Methods report (Rayner et al., 2023).

I2 Hydrodynamic model

Hydrodynamics is the study of water movement. In an estuary, three main elements control the movement of water (tidal hydrodynamics). This includes, estuary geometry, upstream catchment inflows and downstream ocean tides. The geometry of an estuary is defined by its width, length, depth or the shape and storage of sidearms. Upstream catchment inflows are based on rainfall and runoff and downstream tidal inflows are based on the water levels in the ocean.

I2.1 Numerical model

Numerical modelling of the Tweed River estuary tidal hydrodynamics was undertaken using the RMA modelling suite (King, 2015). The RMA-2 hydrodynamic model solves the shallow water wave equations and is suitable for the simulation of flow in vertically, well-mixed water bodies such as, estuaries. RMA-2 uses the principles of conservation of mass and momentum, and represents typical processes of bed and bank friction, turbulence and wind stress.

RMA-2 calculates a finite element solution of the Reynolds-form of the Navier-Stokes equations for turbulent flows. The main internal model parameters applied to the model are eddy viscosity, bed friction and turbulent mixing. The horizontal eddy viscosity (ϵ) is specified in terms of a scaled velocity and element size as presented in Equation I-2:

$$\varepsilon_{xy} = \alpha(x, y, t) \cdot V(x, y, t) \cdot \Delta_{elt}(x, y)$$

Equation I-2

Where:

- ε = horizontal eddy viscosity (m²/s)
- V = velocity (m/s)
- α = non-dimensional scaling factor
- Δ_{elt} = a length representative of the element size (m)

The RMA-2 model utilises a finite element mesh consisting of an irregular connection of nodes and elements to represent the model domain. Finite elements are suitable to model complex estuaries as the elements can vary in size and shape to represent the geometry of the waterbody. Accurate representation of the waterway geometry is important as it is a major factor in replicating and predicting tidal hydrodynamics.

Water levels and flow velocities are predicted at every node within the finite element mesh of the model. One dimensional (1-D) elements are used to represent channel flow velocities in one horizontal direction (i.e. upstream to downstream and where flow occurs perpendicular to the channel cross section), whereas two dimensional (2-D) elements represent depth-averaged flow velocities in two-horizontal directions (i.e. x-y plane). RMA-2 simulates the process of bank wetting and drying as the water level changes through the use of marshing elements. Marshing simulates drying by approximating elements with a smaller width and higher friction for water transfer thereby effectively preventing flow in those elements while conserving mass.

I2.2 Model domain

A 1-D/2-D hydrodynamic model of the Tweed River estuary was developed to simulate the typical tidal water level variations within the estuary. The hydrodynamic model extends to the tidal limits of major rivers, tributaries and creeks in the estuary, including the Tweed River, Rous River and Terranora Creek. The model also includes smaller tributaries and creeks in the lower estuary that contained important floodgate structures. A model grid representing the study area provided increased resolution in areas around the lower estuary where complex 2-D flows were expected and lower resolution in the upper reaches of the estuary where flows were modelled using 1-D elements. The model area is shown in Figure I-1.

Figure I-1: Tweed River estuary - tidal hydrodynamic model extent

I2.3 Model inputs

The hydrodynamic model comprised of three (3) main inputs, including channel geometry, downstream ocean tidal water levels and upstream catchment inflows.

Channel geometry below 2 m AHD was digitised using standard GIS methods for the main flow pathways up to the tidal extent of the Tweed River estuary. The bathymetry hydrodynamic model was extracted from the most recent hydrodynamic flood model developed for the Tweed River floodplain (BMT, 2019).

Catchment inflows were based on observed river flow data from WaterNSW gauging stations in the upper Tweed River catchment as shown in Figure I-2. The flow gauging stations are located upstream of the numerical model boundary, and therefore required adjustment to account for the additional catchment area and runoff that could occur in between the flow gauging location and the model inflow boundary. To account for this, catchment runoff data was scaled by the additional contributing catchment areas that were missed between the gauges and the model boundary. This was achieved using standard GIS methods to compare the upstream area of the gauging sites to the upstream area of the model domain. A summary table of the upstream inflow boundaries and scaling factors are provided in Table I-1. Localised floodplain subcatchment runoff inflows were excluded from the model as sensitivity testing indicated that day-to-day water levels in the lower reaches of the estuary were found to be dominated by tidal fluctuations. The downstream ocean tidal boundary of the model was based on the observed water levels from the NSW DPIE Manly Hydraulics Laboratory (MHL) station at Tweed Entrance South (station number 201472).

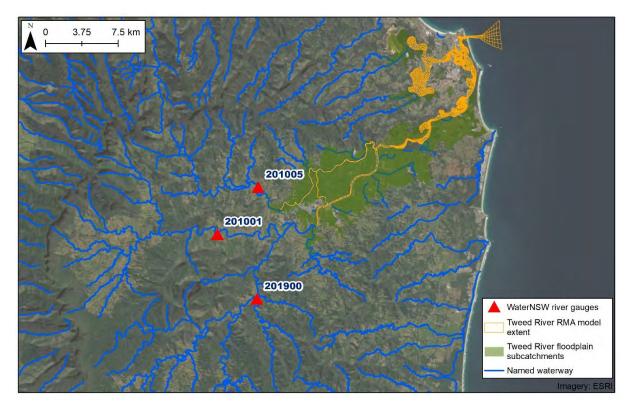


Figure I-2: Location of WaterNSW river flow gauges with relation to the hydrodynamic model extent

	-	-	
Gauging station name	Data source	Station number	Scale factor
Oxley River at Eungella	WaterNSW	201001	1.178
Tweed River at Uki	WaterNSW	201900	1.
Rous River at Boat Harbour 3	WaterNSW	201005	1.103
Tweed Entrance South	MHL	201472	N/A

Table I-1: Summary of model boundary conditions

I2.4 Model calibration

The hydrodynamic model for the Tweed River estuary was calibrated to selected water level gauging stations along the main river channel for 2017. The year 2017 was selected based on BOM rainfall records for the northern parts of NSW closely representing the long-term annual average rainfall for this region. The locations of the water level stations used for the water level calibrations are shown in Figure I-3. Water level data was sourced from NSW DPIE Manly Hydraulics Laboratory (MHL).

The main internal model parameters in the RMA-2 hydrodynamic model are eddy viscosity and friction (applied as Manning's n). The model was calibrated by adjusting the Manning's n value to match the observed tidal ranges and phasings throughout the estuary. A Manning's n value of value of 0.020 was adopted offshore near the estuary entrance and a value of 0.023 was adopted for the main channel up to the tidal limit to achieve final calibrations.

The calibration results for a selected 20-day window are provided in Figure I-4 to Figure I-8. The model was calibrated (for dry weather periods) to within 0.05 m in the lower estuary and to within 0.15 m in the upper estuary, where the channel geometry incorporated into the model was less reliable.

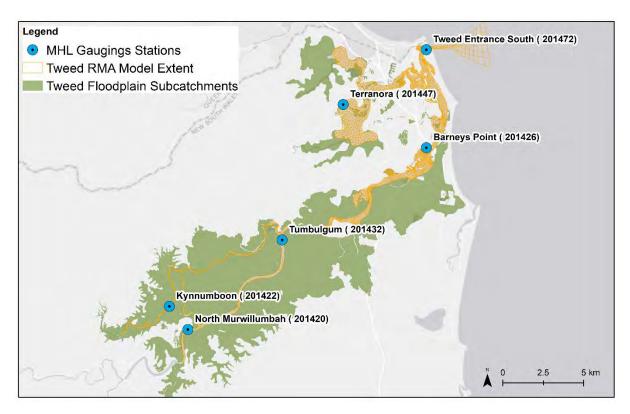


Figure I-3: Location of selected water level stations used for calibration of the Tweed River estuary hydrodynamic model

I2.5 Model verification

The calibrated model was then used to simulate a representative 'wet' year (i.e. more rain than average across the catchment) and a representative 'dry' year (i.e. less rain than average across the catchment) based on analysis of BOM rainfall records in Northern NSW. For this study, 2013 and 2019 were selected as the wet and dry years respectively. The model results from these simulations were then used to verify the tidal water calibrations throughout the estuary. Tidal water level verification plots for the Tweed Estuary for 2013 and 2019 are provided in Figure I-9 to Figure I-17.

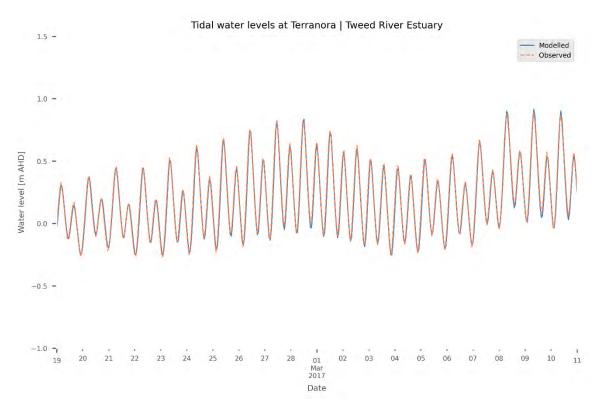


Figure I-4: Tweed hydrodynamic model calibration results (2017) at Terranora (201447)

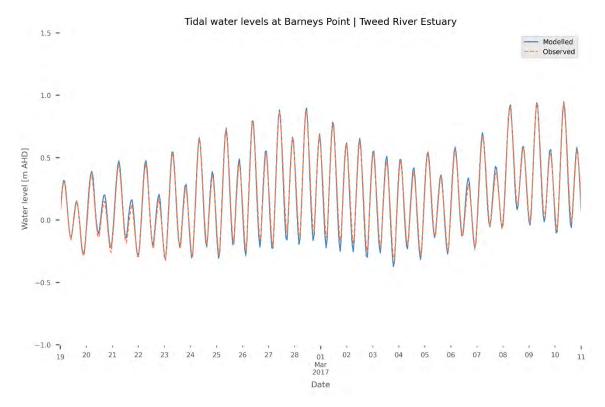


Figure I-5: Tweed hydrodynamic model calibration results (2017) at Barneys Point (201426)

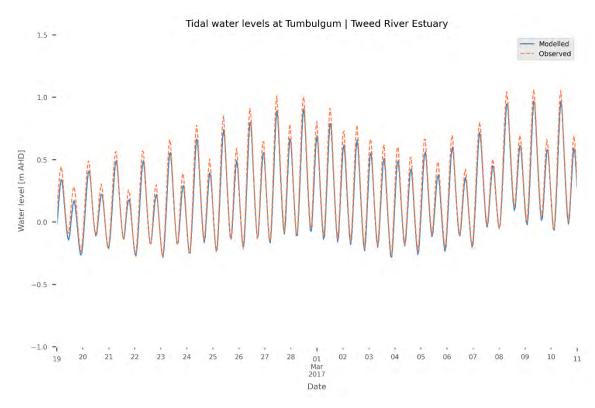


Figure I-6: Tweed hydrodynamic model calibration results (2017) at Tumbulgum (201432)

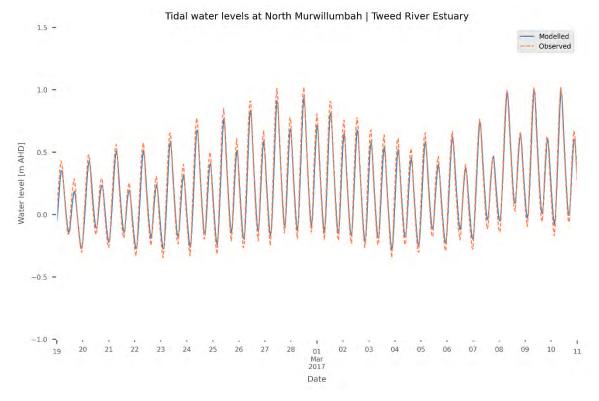


Figure I-7: Tweed hydrodynamic model calibration results (2017) at North Murwillumbah (201420)

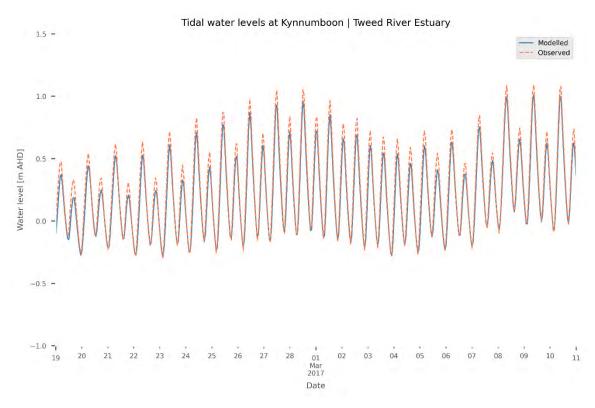


Figure I-8: Tweed hydrodynamic model calibration results (2017) at Kynnumboon (201422)

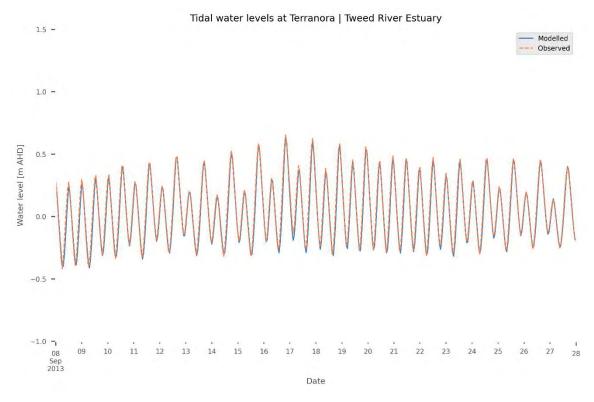


Figure I-9: Tweed hydrodynamic model verification results (2013) at Terranora (201447)

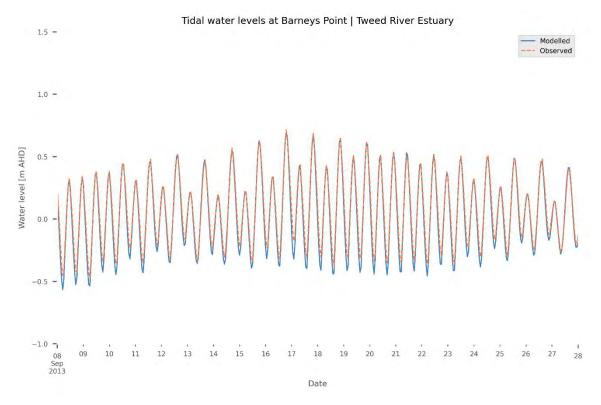


Figure I-10: Tweed hydrodynamic model verification results (2013) at Barneys Point (201426)

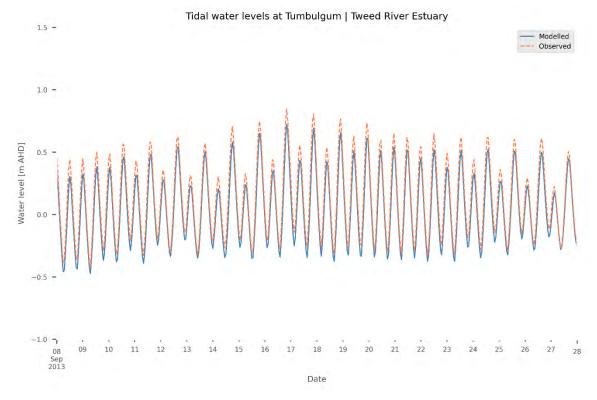


Figure I-11: Tweed hydrodynamic model verification results (2013) at Tumbulgum (201432)

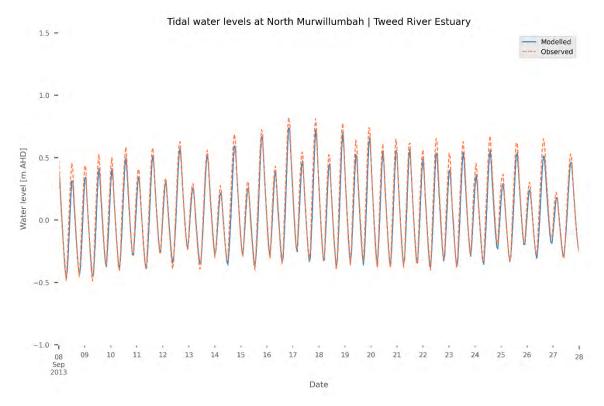


Figure I-12: Tweed hydrodynamic model verification results (2013) at North Murwillumbah (201420)

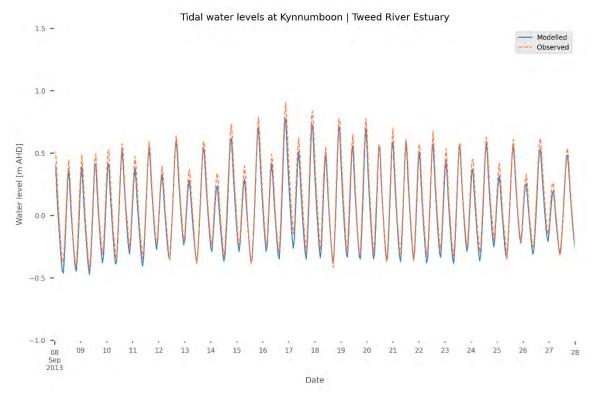


Figure I-13: Tweed hydrodynamic model verification results (2013) at Kynnumboon (201422)

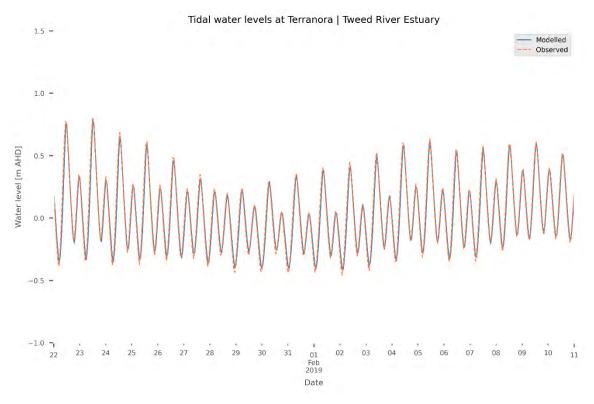


Figure I-14: Tweed hydrodynamic model verification results (2019) at Terranora (201447)

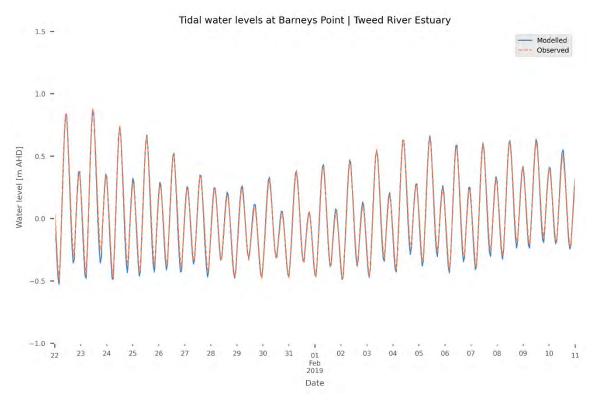


Figure I-15: Tweed hydrodynamic model verification results (2019) at Barneys Point (201426)

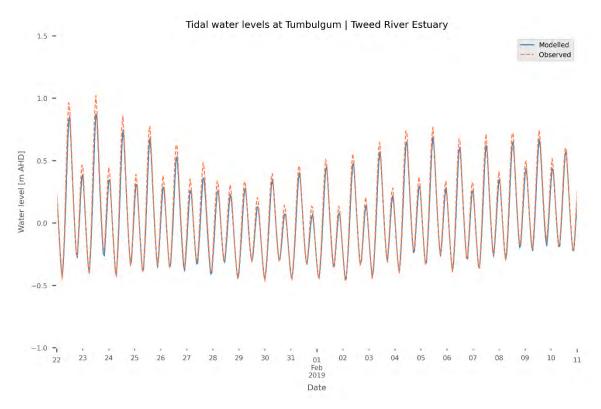


Figure I-16: Tweed hydrodynamic model verification results (2019) at Tumbulgum (201432)

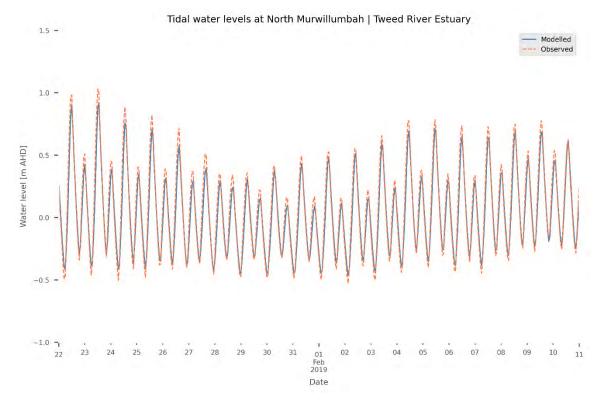


Figure I-17: Tweed hydrodynamic model verification results (2019) at North Murwillumbah (201420)

J1 Preamble

Acid discharges from ASS-affected floodplains are well reported to cause stress to sensitive environmental receivers (Rayner, 2010; Winberg and Heath, 2010; Glamore, 2003; Sammut et al., 1996). Furthermore, water control structures associated with ASS-affected drains, such as one-way floodgates, prohibit the passage of aquatic species and limit the overall primary production of estuaries (Winberg and Heath, 2010). Sensitive environmental receivers are widespread throughout the Tweed River estuary. This section provides an overview of the proximity of sensitive environmental receivers to acidic drainage areas within the study area, and the information provided in this section was used to inform the prioritisation of each sub-catchment.

J2 Sensitive environmental receivers of the Tweed River estuary

Several sensitive environmental receivers were identified during the course of this investigation. Both aquatic and terrestrial ecological communities and sensitive locations were identified and mapped as provided in Figure J-1 to Figure J-4, including:

- Key fish habitat relating to the Fisheries Management Act (1994);
- Oyster leases;
- Estuarine macrophytes; and
- Coastal wetlands as defined by the State Environmental Planning Policy (Coastal Management) 2018.

The proximity of each sub-catchment in the study area to downstream stationary sensitive receivers was calculated as provided in Table J-1.

.	Oyster	Estuarine ma	acrophytes		Coastal	SER within
Subcatchment	leases	Saltmarsh	Seagrass	Mangroves	wetlands	subcatchment
Bilambil/ Terranora	700	0	800	0	0	Saltmarsh, mangroves, coastal wetlands, key fish habitat
Cobaki	2,700	0	0	0	0	Saltmarsh, seagrass, mangroves, coastal wetlands, key fish habitat
Commercial Road	33,500	16,600	20,300	1,500	1,200	None
Condong	25,400	8,900	12,200	0	3,200	None
Dulguigan	25,500	8,300	12,400	0	0	Mangroves, coastal wetlands, key fish habitat
Dunbible Creek	35,700	18,900	22,500	3,700	0	Coastal wetlands, key fish habitat
East Chinderah	10,800	200	0	0	0	Mangroves, coastal wetlands, key fish habitat
Kynnumboon	32,100	14,800	18,900	2,000	0	Coastal wetlands, key fish habitat
North Tumbulgum	17,200	0	4,000	0	0	Mangroves, coastal wetlands, key fish habitat
South Murwillumbah	32,300	15,500	19,200	300	2,200	None
Stotts Creek	19,600	3,100	6,500	0	100	None
Tumbulgum/ Eviron	20,700	4,200	7,500	0	100	Key fish habitat
Tygalgah	24,900	7,700	11,800	0	0	Mangroves, coastal wetlands, key fish habitat
West Chinderah	14,000	0	500	0	0	Saltmarsh, mangroves, coastal wetlands, key fish habitat

Table J-1: Summary of approximate proximity (in metres) of sensitive environmental receivers (SER) to each subcatchment within the study area

*Note: Within subcatchment does not include SER that may be found on the outside boundary (i.e. downstream of floodgates) of the subcatchment.

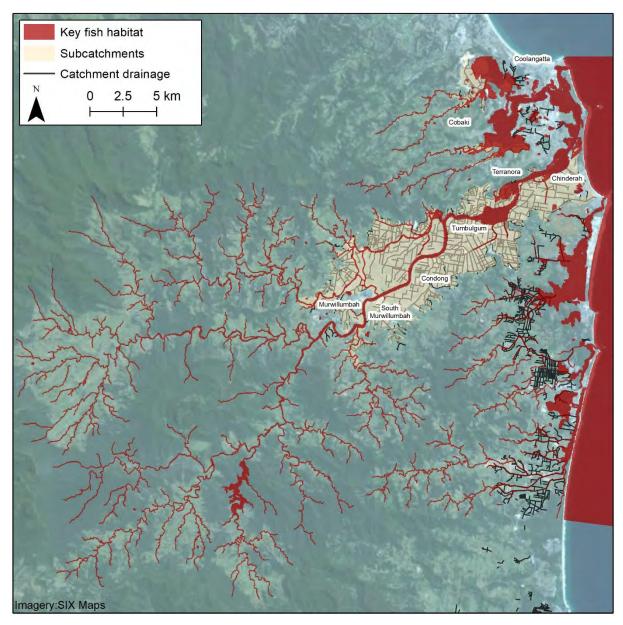


Figure J-1: Key fisheries habitat (Source: NSW DPI Fisheries)

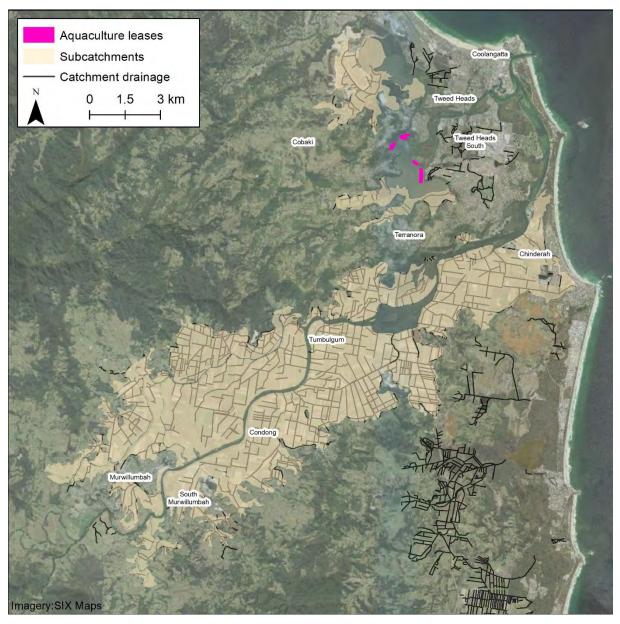


Figure J-2: Priority oyster leases (Source: NSW DPI Fisheries)

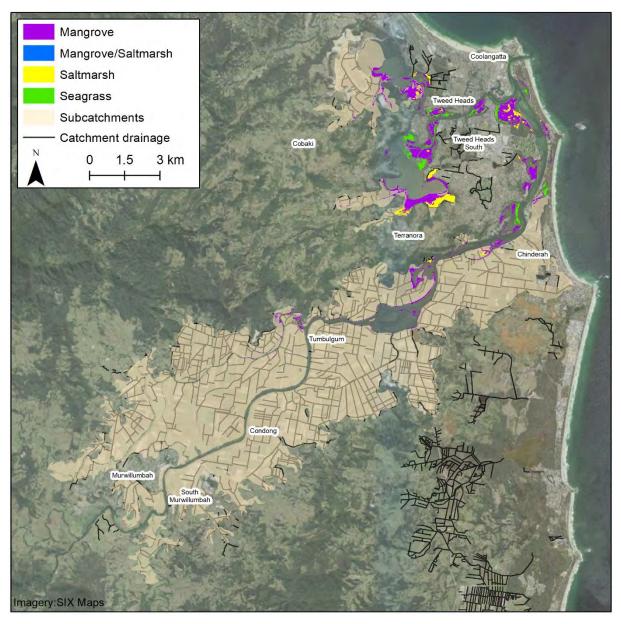
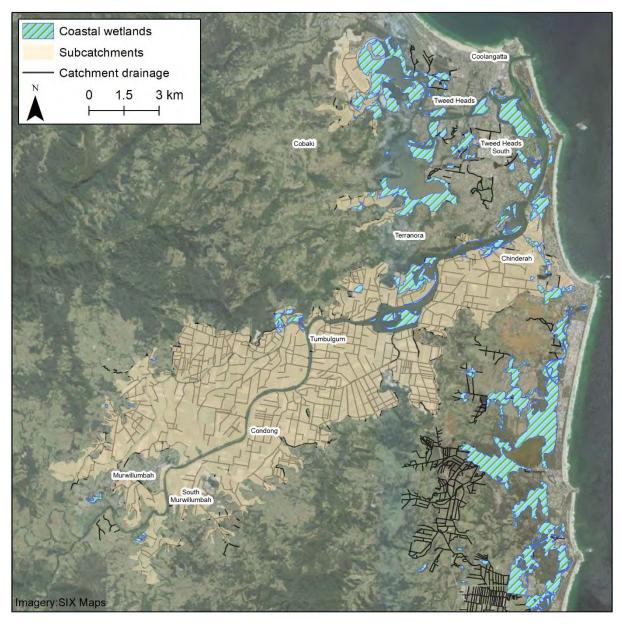



Figure J-3: Estuarine macrophytes (Source: NSW DPI Fisheries)

Figure J-4: Coastal Management SEPP coastal wetlands (Source: SEED NSW data portal)¹

¹ Note that the State Environmental Planning Policy No. 14 (SEPP14) for Coastal Wetlands was repealed by cl 9 (a) of State Environmental Planning Policy (Coastal Management) 2018 (106) with effect from 3.4.2018. This policy aims to promote an integrated and co-ordinated approach to land use planning in the coastal zone to ensure that these areas, including coastal wetlands are preserved and protected in the environmental and economic interests of the State.

Appendix K Heritage

K1 Preamble

Heritage listings in NSW are protected by law under the Heritage Act, 1977 (amended 1998) and the Environmental Planning and Assessment Act 1979. Nationally significant heritage items are protected under the Environment Protection and Biodiversity Conservation Act 1999. Heritage items protected include:

- Items listed in local councils Local Environmental Plan (LEP) or Regional Environmental Plan (REP);
- Items listed on the State Heritage Register;
- Items listed on State Agency Heritage Registers (under Section 170 of the Heritage Act, 1977);
- Items listed on Interim Heritage Orders;
- Items listed on the Aboriginal Heritage Information Management System (AHIMS);
- Items listed on the Maritime Heritage Database;
- Items listed on the Commonwealth Heritage List; and
- Items listed on the National Heritage List.

Implementation of management options need to consider any heritage listed items that may be affected during on-ground works. Heritage items fall under the category of implementation constraint in the prioritisation methodology (see Section 2 of the Methods Report (Rayner et al., 2023)). Note that new heritage items are continuously being registered. Subsequently, items identified and presented in this section should only be used as a guide and it is encouraged that anyone seeking to identify the most recent information on heritage listed items will need to consult the relevant registers which contain current information.

K2 Aboriginal heritage

Aboriginal sites across the Tweed River floodplain listed within the Aboriginal Heritage Information Management System (AHIMS) have been identified to determine if they affect the implementation of management options. Due to the sensitive nature of this information no data can be presented here, however, some aboriginal heritage items are presented within the NSW State Heritage Inventory where there is no restriction (see Section K3).

Note that for any works that will alter the landscape due diligence may need to be carried out as per the National Parks and Wildlife Act 1974. Searching AHIMS is only part of this due diligence process. Furthermore, AHIMS data sourced for this study is only up to date as of October 2019. Prior to any activities being undertaken such as actions outlined in the management options, a renewed search of AHIMS will need to be undertaken to ensure the most current information is being used.

K3 European heritage

Heritage listed items, including items of European origin, have been identified from the Commonwealth Heritage List, National Heritage List and the NSW State Heritage Inventory, which includes:

- Items listed on the State Heritage Register;
- Listed Interim Heritage Orders;
- Items listed on State Agency Heritage Registers; and
- Items listed on the Tweed Shire Council LEP.

Figure K-1 outlines items that have been identified on the National Heritage List, the NSW State Heritage Register and the NSW Office of Environment and Heritage (OEH) Agency Register, and the Historic Heritage Information Management System (HHIMS). Items listed on the Commonwealth Heritage Register overlap with the NSW State Heritage Register in the study region so only the NSW State Register items have been displayed. As of June 2020, no Interim Heritage Order items were identified within the study area. Note, prior to any activities being undertaken such as actions outlined in the management options, a renewed search of registers will need to be undertaken to ensure the most current information is being used.

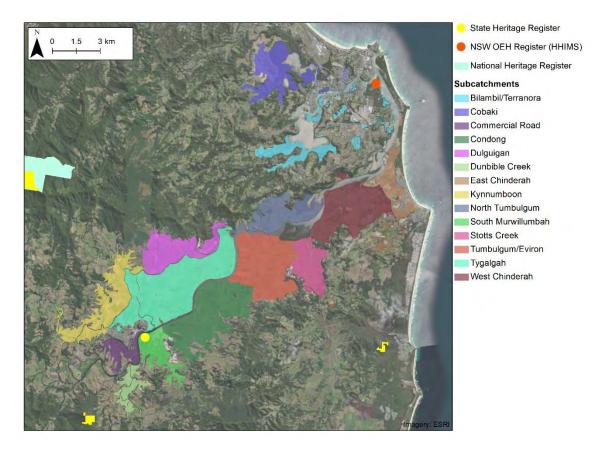


Figure K-1: Heritage items listed on Australian and NSW registers with location information

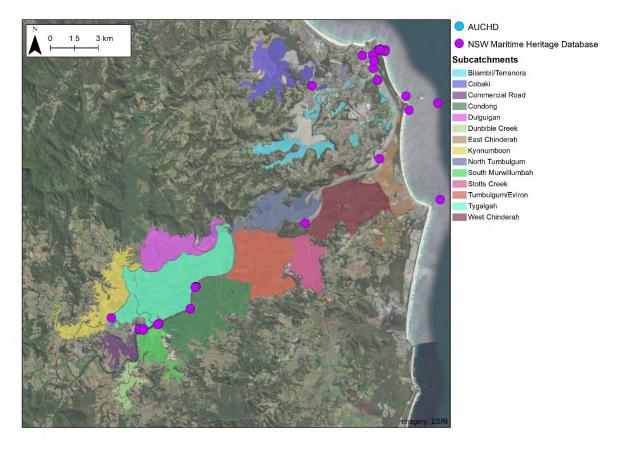
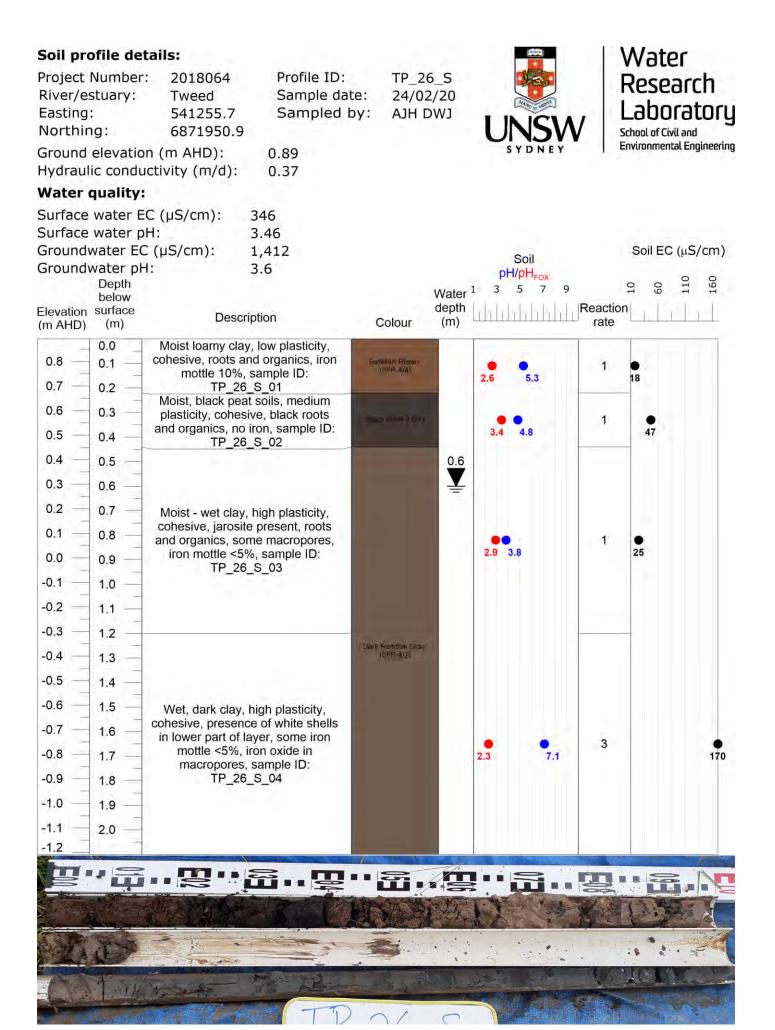
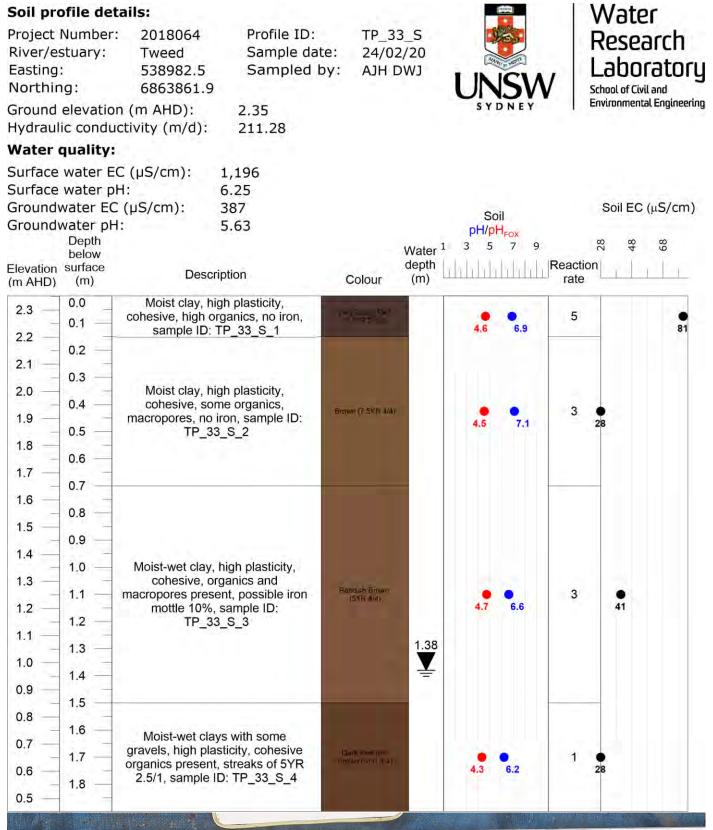
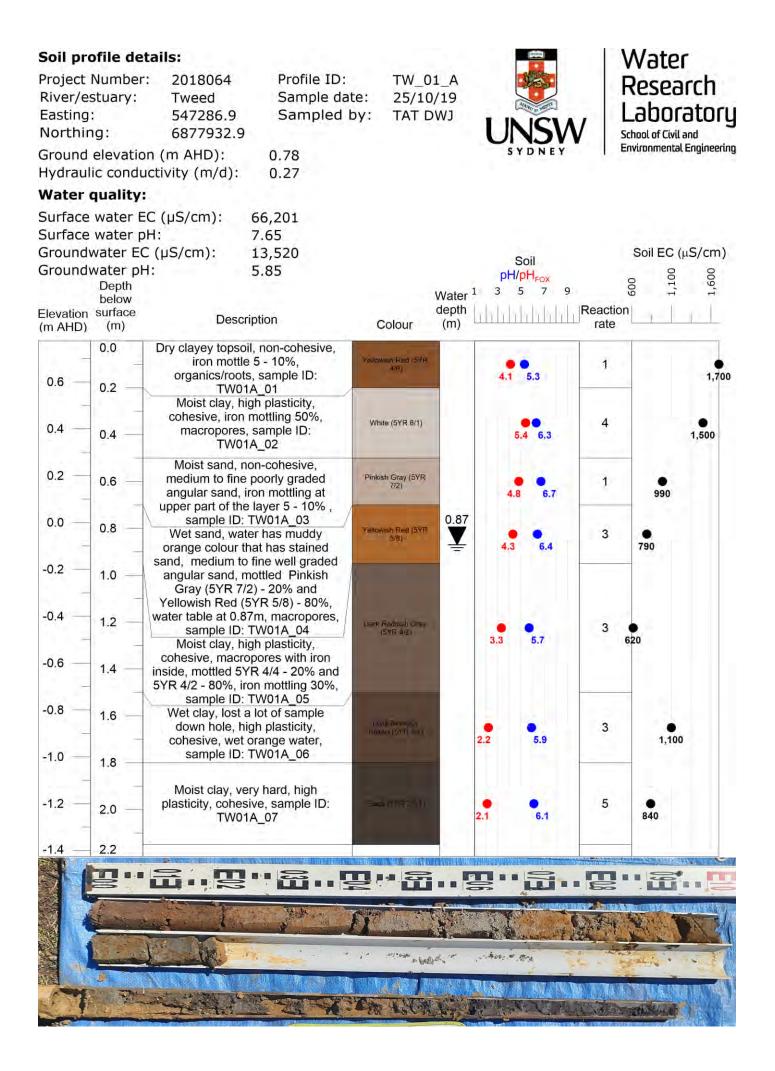
A total of 169 items were identified as listed on State Agency Registers and the Tweed Shire Council LEP. For an up to date list of these items consult the NSW State Heritage Inventory.

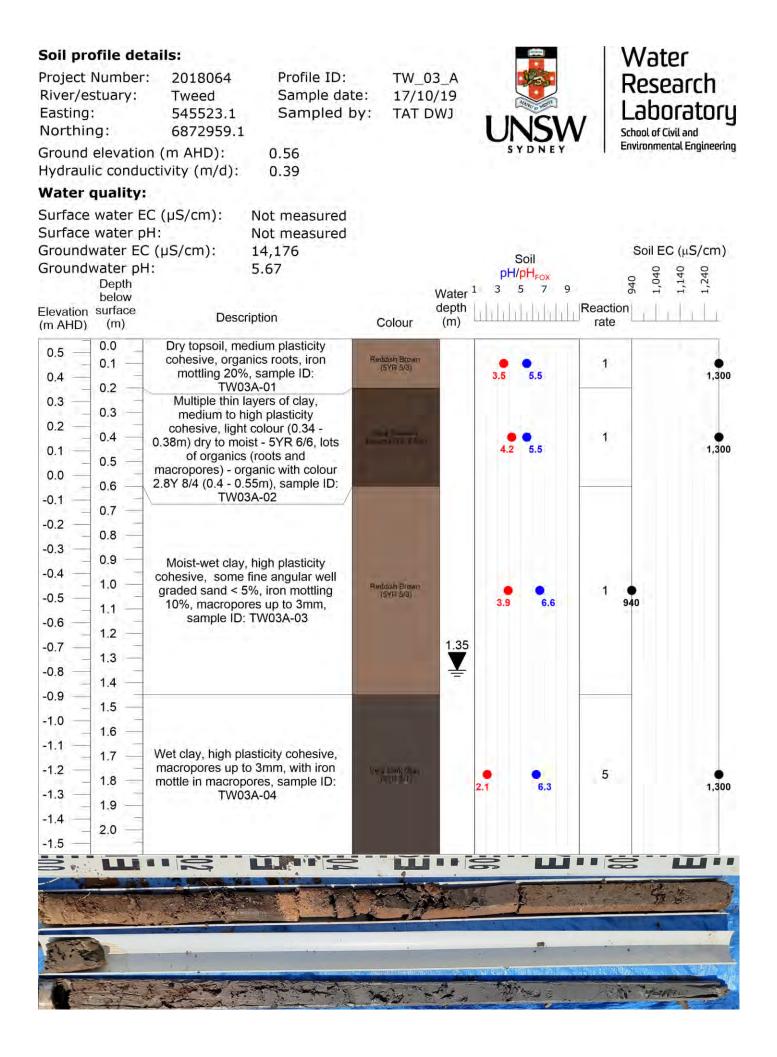
K4 Maritime heritage

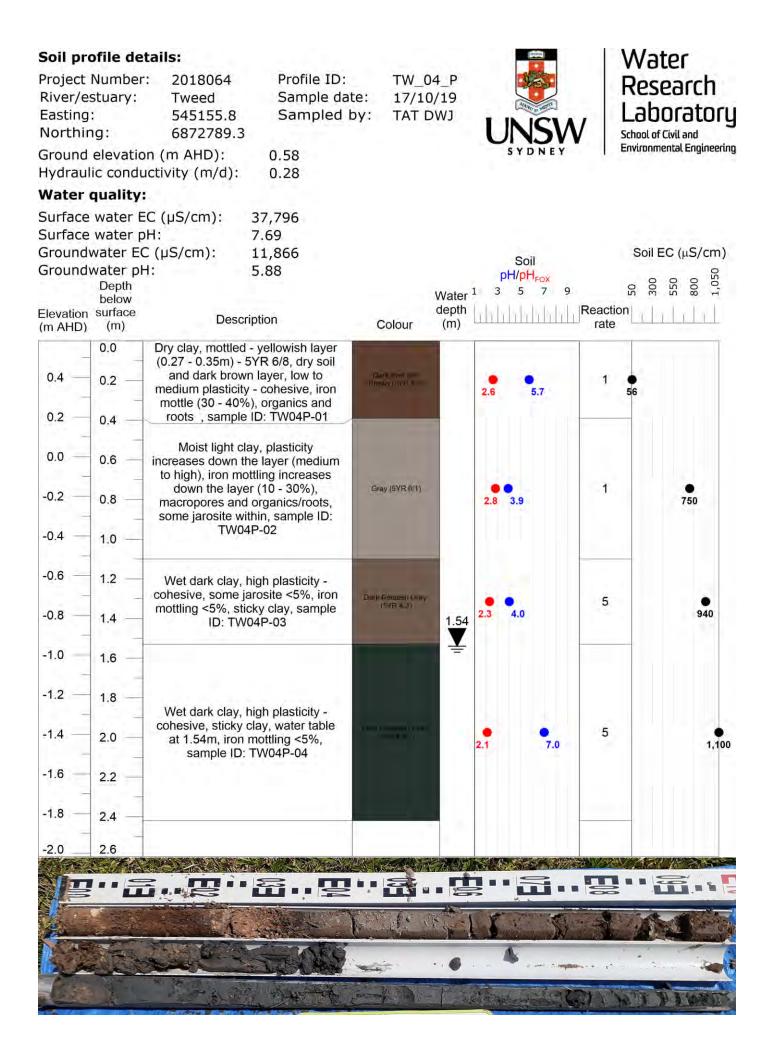
In addition to provisions outlined under the NSW Heritage Act 1977, items of maritime heritage are protected by the Commonwealth Underwater Cultural Heritage Act 2018. Maritime heritage items can be found on the following registers:

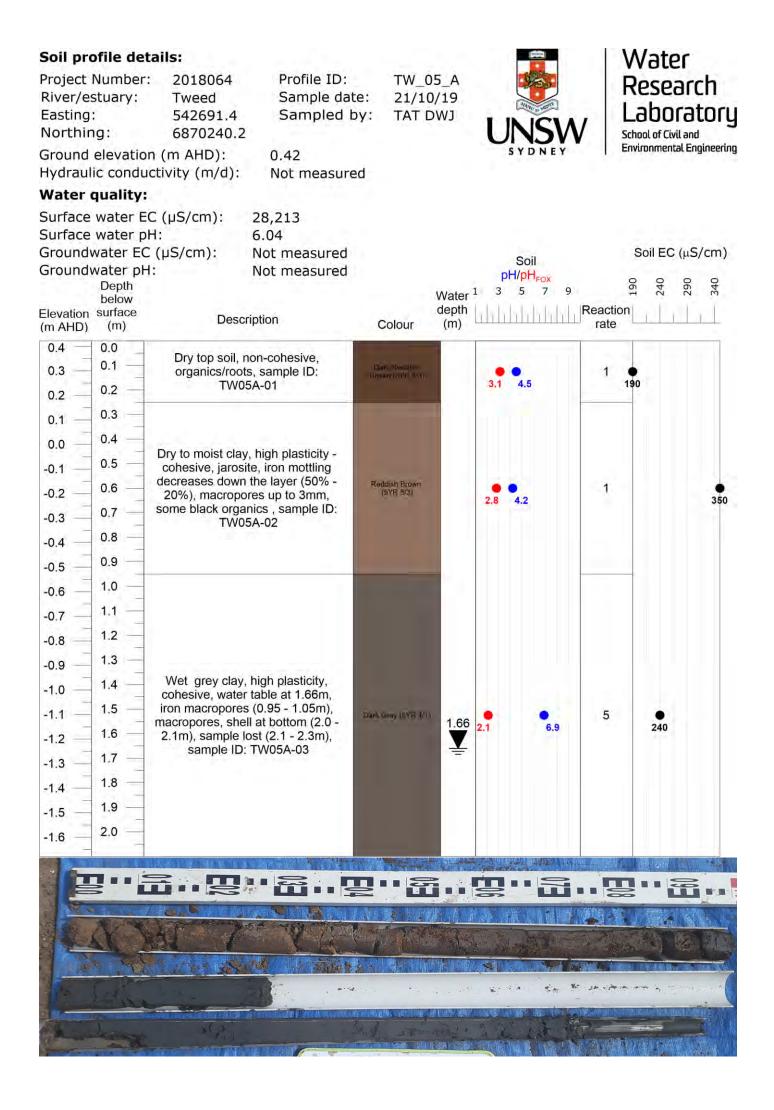
- The Australian Underwater Cultural Heritage Database (AUCHD); and
- The NSW Maritime Heritage Database.

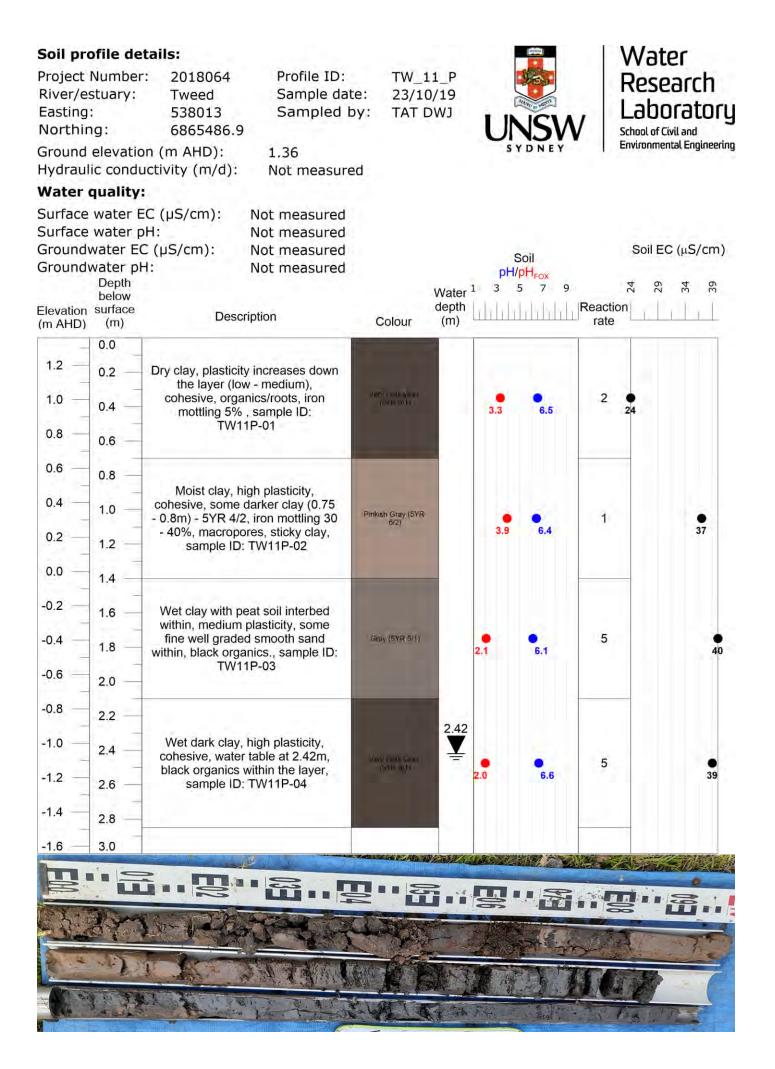
Items of maritime heritage listed in the aforementioned registers are displayed in Figure K-2. Note that items added after June 2020 are not included in this list. Prior to any activities being undertaken, such as actions outlined in the management options, a renewed search of registers will need to be undertaken to ensure the most current information is being used. Furthermore, the Maritime Heritage specialist services team should be contacted to determine if there are any items of importance that have not been listed.


Figure K-2: Maritime heritage items listed on Australian and NSW registers

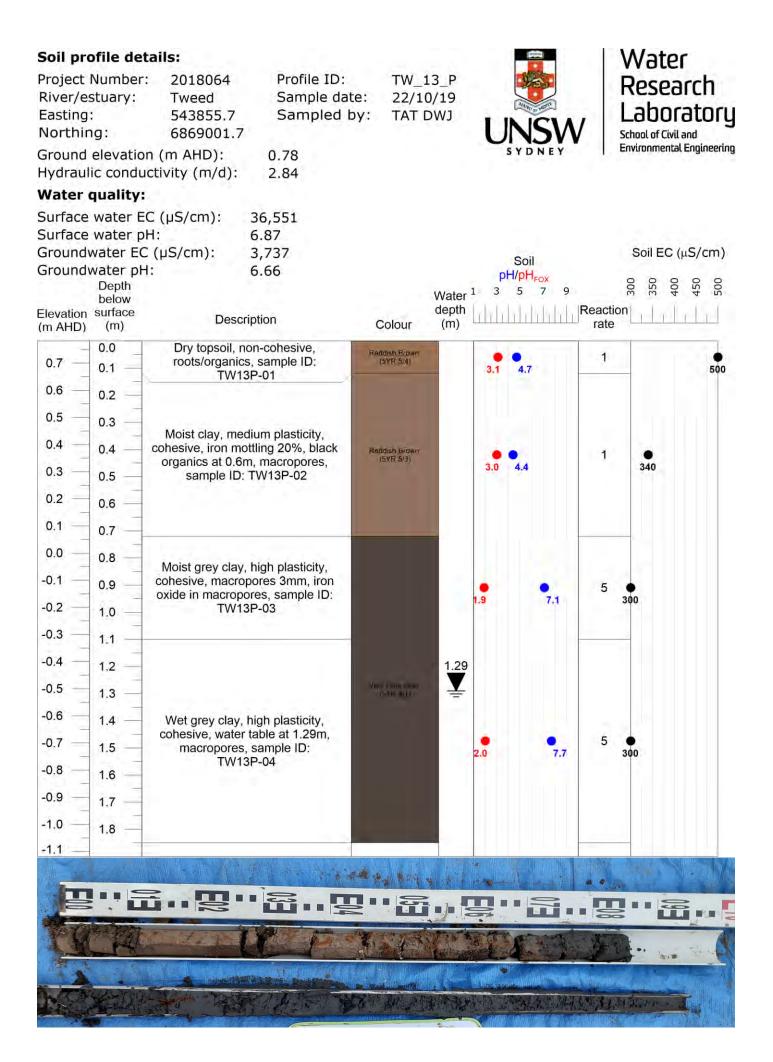


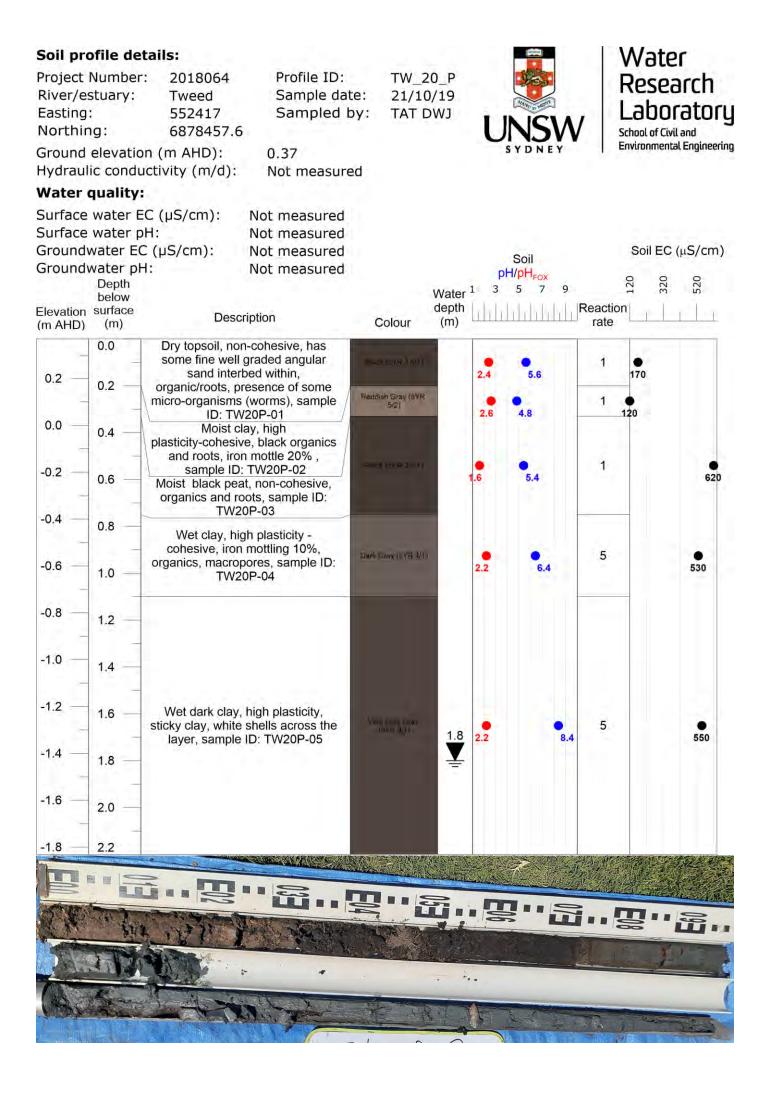


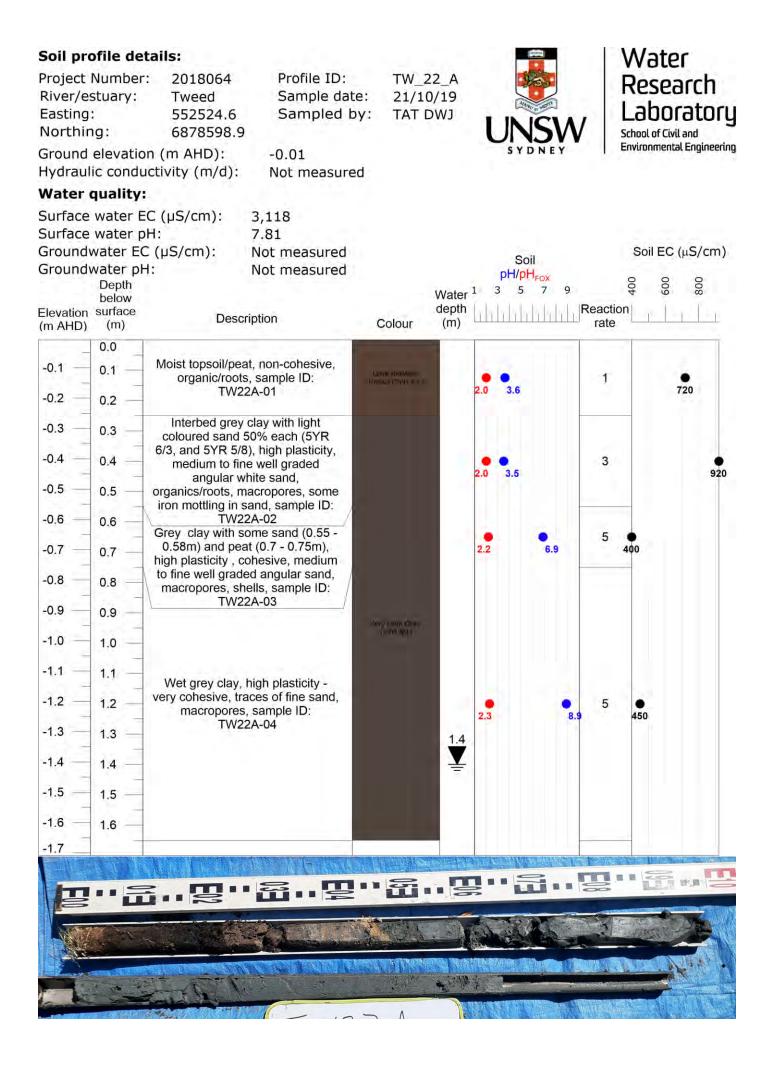


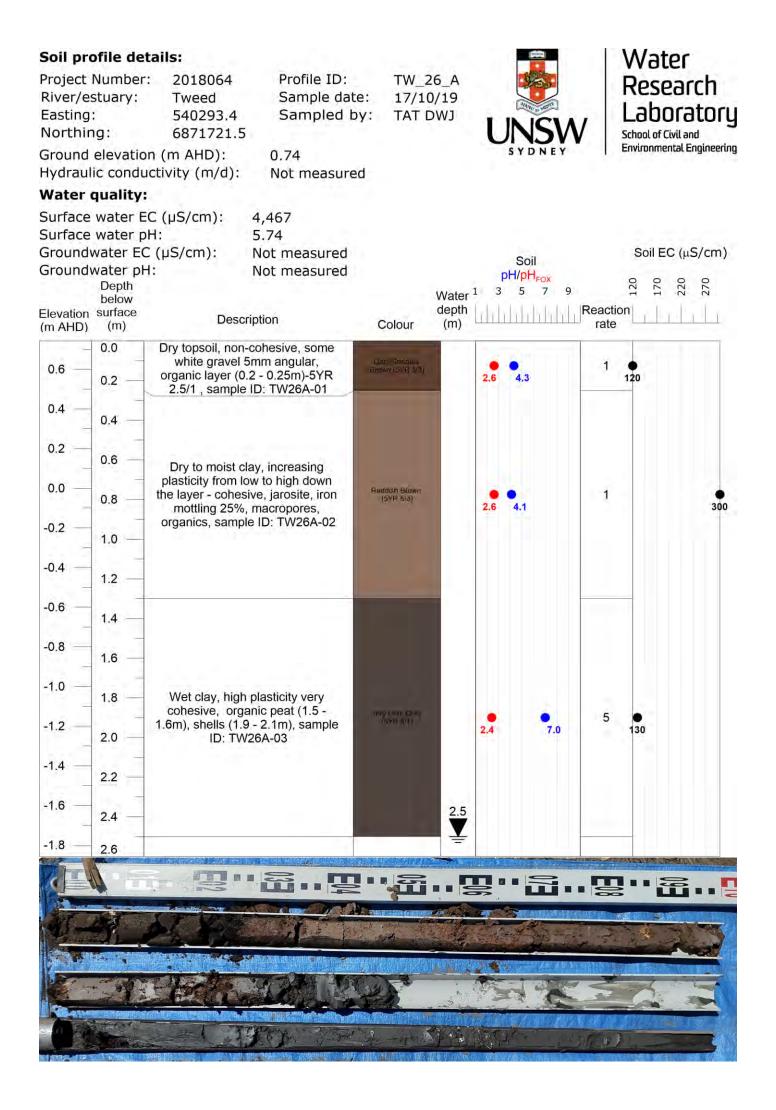
Soil pro Project I River/es Easting: Northin	Number: stuary: :		Profile ID: Sample da Sampled)/19	U	NSW	/ s	Water Research _aborato ^{chool of Civil and}	ry
		n (m AHD): ctivity (m/d):	0.60 0.30			T	SYDNEY	I E	nvironmental Engine	ering
Water o			0.50							
Surface Groundv	water p water EC water pH Depth below	: (µS/cm): !:	Not measured Not measured 7,215 6.11 ription	Colour	Water depth (m)		Soil H/pH _{FoX} 5 7 9	Reactior rate	Soil EC (μS/cr	
0.4 —	0.0 	organics and ro	nedium plasticity, ots, iron mottling b ID: TW05P-01	Don Rect Brown (S7F) No)		2.9	5 .7	1	6 9	
0.2	0.4	cohesive, iron	iigh plasticity mottling (30%), ots, macropores,					1		
-0.2	0.6	sample ID	, low to medium	Røddat Gosy (5YR M2)	4	3.2	5.1		170	
-0.4	1.0 —	plasticity, fine we sand, iron moth some macropo	ell graded smooth ling (10 - 15%), res, sample ID: 5P-03			2.6	4.5	Ť	9 380	
-0.6	1.2				1.33 T				-	
-1.0	1.6 — _ 1.8 —	cohesive, some smooth sand a some large ma	high plasticity fine well graded cross the layer, cropores, some	Vert Laute Gauss				5		
-1.4 —	2.0 —	layer), sticky c	scattered within lay , sample ID: 5P-04			2.0	7.1		7	710
-1.6 —	2.2									
-1.8	2.4									
	23									
					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2		HI (

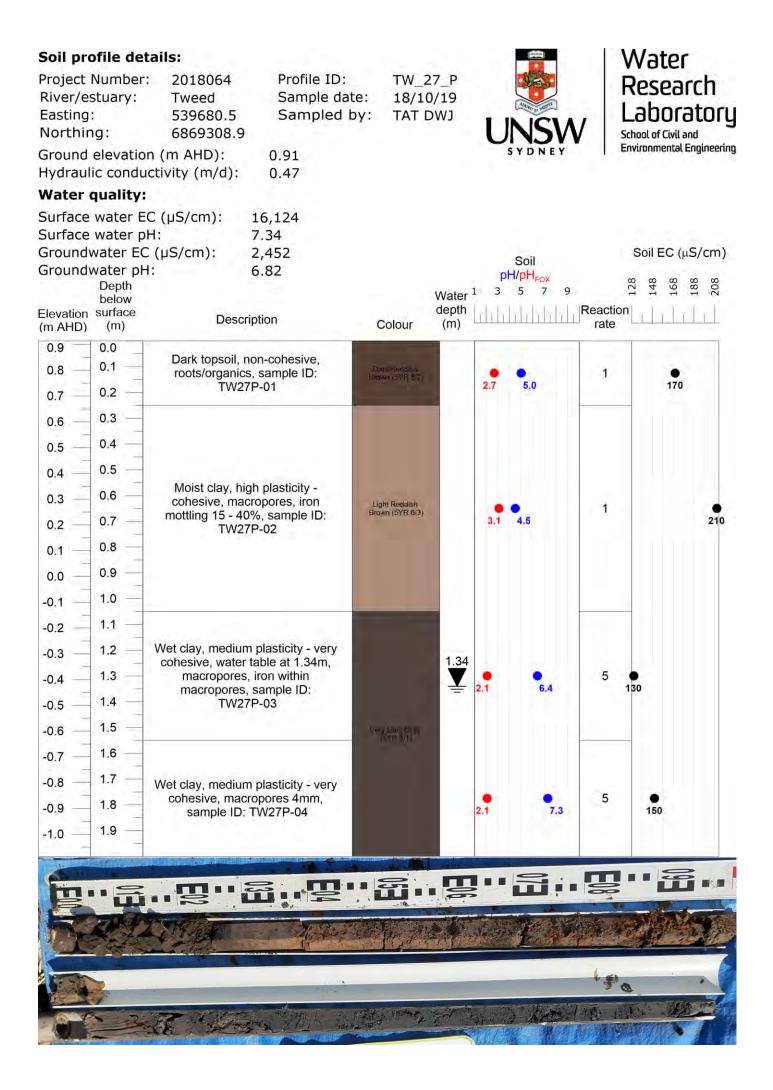
Soil profi	ile deta	ails:					armon -		Vater
Project Nu River/estu Easting: Northing	uary:	2018064 Tweed 537526.5 6868235.8	Profile ID: Sample date: Sampled by:	TW_07 24/10/ TAT D	/19	UN	S SW		Research aboratory hool of Civil and invironmental Engineering
		(m AHD): tivity (m/d):	1.23 0.10			SY	DNEY	I En	wuonmentat Engineering
Water qu	ality:								
Surface w Groundwa Groundwa D b Elevation su	vater pH ater EC ater pH Depth Delow urface	l: 7. (μS/cm): 2,	814 09 009 77 on		Water depth (m)		oil 9 <mark>H_{FOX} 79</mark>	Reaction	Soil EC (μS/cm)
	(m)).0	Dry clay, non-coh		Colour	(11)			Tate	
-).2	mottling <5%, orga sample ID: TW	anics/roots,	Form Rectand Indust (SYR) 5-11		3 ,1 4,	3	2	260
1.0	-	Moist clay, high cohesive, lower par has fine well graded within the clay, iron	t of the layer smooth sand	ht Gray (SYR 7/1)		0 0 3 ,1 4 .	3	2	•
0.6 _ 0	0.6	30%, macropores, TW07A_	sample ID:	_					
0.4).8	Moist clay, high cohesive, macrop mottling 20 - 30%, ja	oores, iron arosite within	Randish Brown (SYR 5/3)		90 3.3 4.	3	2	220
0.2 - 1	.0	5%, sample ID: 1	W07A_03				J		220
-0.2 1	.2 — .4 —	Wet dark clay, hig cohesive, mac organics/roots, iron jarosite (with green material 1.4 -1.6m)	ropores, mottling 5%, sh yellowish , sample ID:	nh silony (E)(si 4/1)	1.45 T	2.3	7.5	5 (14	40
-0.4 1	.6	TW07A_							
-0.6 1	.8 —								
-0.8 2	2.0	Wet dark clay, hig cohesive, mac							
-1.0 _ 2	2.2	organics-roots, she layer, sample ID:	lls within the	New Salar Color Tradition		2.1	6.5	5	170
-1.2 — 2	2.4 —								
-1.4 - 2	2.6 —				-				
2	2.8				and the second s	Land and And		1-1-	
E	1		5. P	1					
	E	Red 1	This part	19-	-1	A C	11	r Alfred	
1 and	1 4	A A BA	De Antes		Ster.	-0	C	- 1 g (··
6			ALL STATE	a a tr	1917	1930			
and the second	and the			-	3		all an east of	A CONTRACT	Street - All

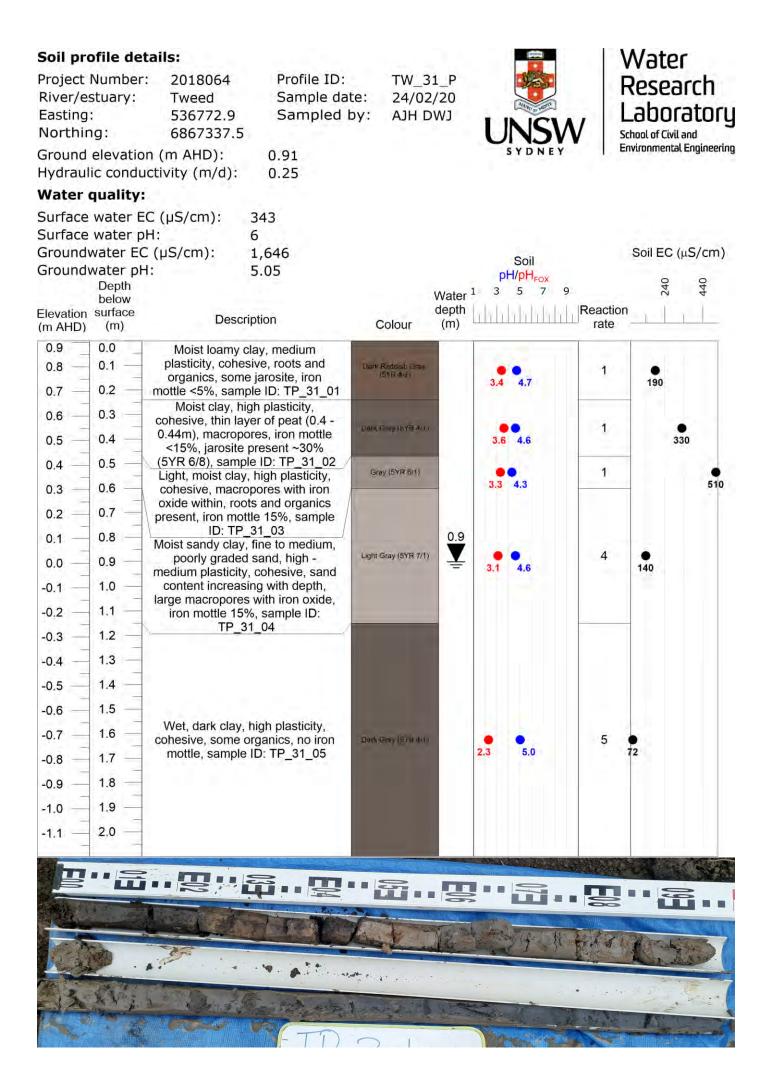

Soil profile det Project Number: River/estuary: Easting: Northing:	2018064 Tweed	Profile ID: Sample date: Sampled by:	TW_1 23/10 TAT D	/19	UN	NSV		Vater Resear abora	tory
Ground elevation Hydraulic conduc		.54 .10			S N	DNEY	En En	vironmental E	ngineering
Water quality:									
Surface water EC Surface water pH Groundwater EC Groundwater pH Depth below Elevation surface	H: 3.83 (μS/cm): 618	2 (creek), 250 8 (creek), 6.25 8			s pH/	Soil pH _{FOX} 5 7 9	Reaction	Soil EC (µs ຊຸ່ອ	5/cm) ¥
Elevation surface (m AHD) (m)	Description		Colour	(m)		hinn	rate		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dry topsoil, non-co roots/organics, sam TW10A-01	nolo ID:	Sat - Anno Same (1991) - T		3.2	5.9	1		52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Moist clay, high pla cohesive, jarosite, iron - 15%, black organics particularly at 0.55 - 0.6 ID: TW10A-0	mottling 10 s present Sm, sample	andan Birakn ISTR 4 3)		3.5	6 .4	3	• 37	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Moist - wet clay, high cohesive, some very fi bottom 0.15m of lay mottling (5 - 10%) and 0.75 - 0.85m, macro sample ID: TW10	ne sand in /er, iron 40% from opores ,	eddah Brown (SYR 5/3)	1.27	3.7	6,5	1	6	
0.2 - 1.3 - 0.1 - 1.4 - 0.0 - 1.5 - 0.0 - 1.5 - 0.0 - 1.5 - 0.0 - 0	Wet sandy clay, mediur cohesive, fine angular v sand, water table at macropores, samp TW10A-04	vell graded 1.27m,	e a dawai cili an Aleviti da l	Ţ	2.0	6,5	5	• 32	

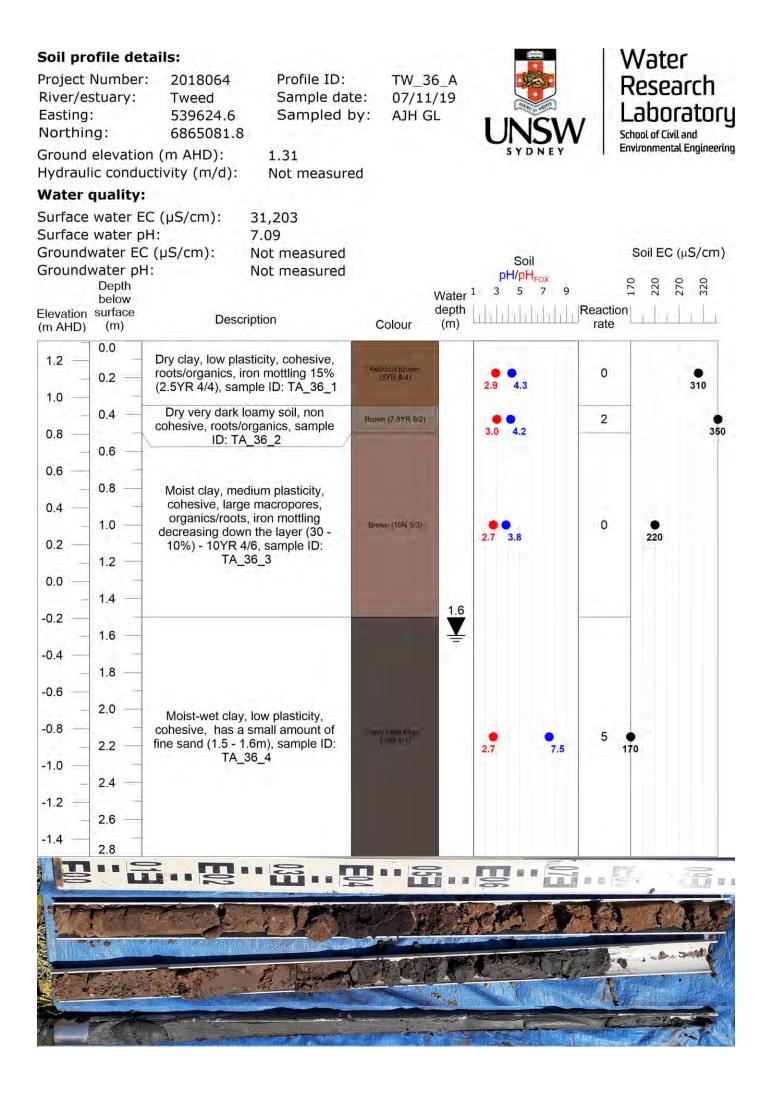


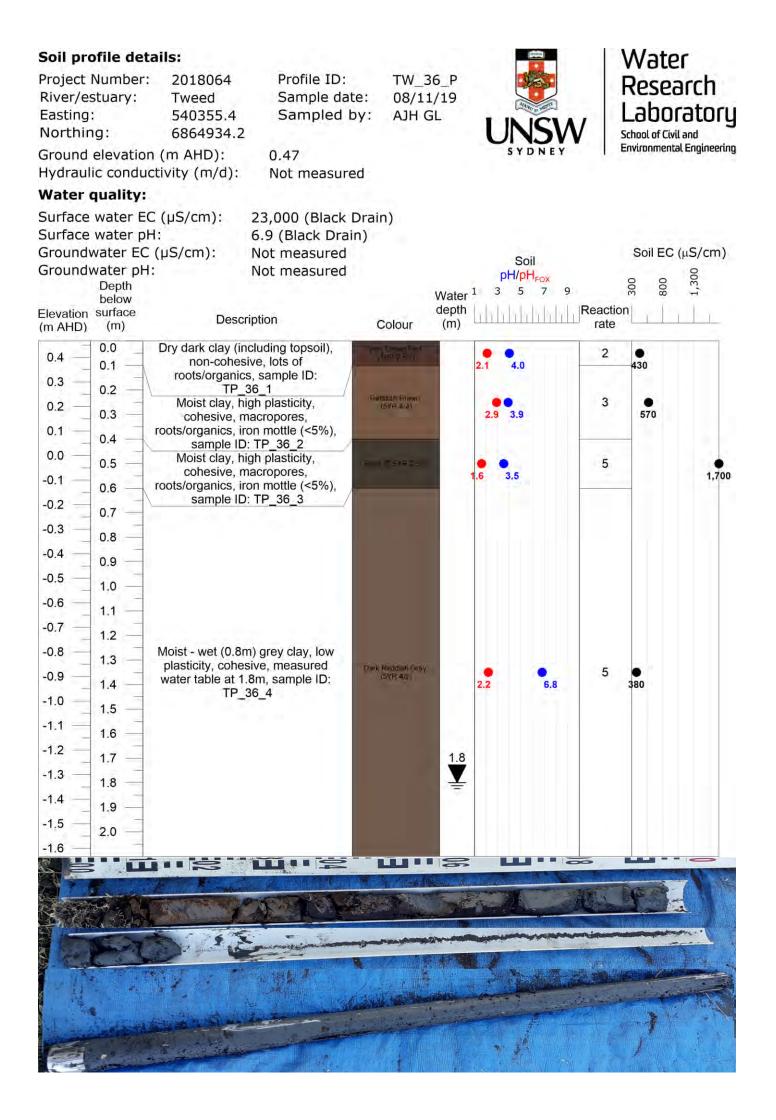

	nber: 2018064 ary: Tweed 540027.8 6865836.7 vation (m AHD): 1	Profile ID: Sample date: Sampled by: .56 .34	TW_12_A 08/11/19 AJH GL		N R	Vater esearch aboratory ^{ool of Civil and} ironmental Engineering
Water qua		.34				
		0				
Surface wa		9		Soil		Soil EC (μS/cm)
Groundwat	er pH: 6.4 pth			pH/pH _{FOX}		100 150 200
be	low		Water depth	1 3 5 7	9 G	15 - 16
Elevation sur (m AHD) (r	n) Description	- IA	Colour (m)	lahhhhhh	rate	
1.4	very compacted, roots	organics, ,	addistr Brown (5YR 5/4)	4.2 6.0	3	● 180
0.2	Moist clay, high pla					
1.2 0.4	cohesive, macropore	es, small on mottle	wn (7 5716 6/3)	6.8	ા	210
1.0 0.6	TA_12_2					
0.8 0.8	Moist clayey sand, nor					
0.6 — 1.0	 medium - fine grain point sand, some organics, i 0.7 - 0.9m - <5%, 0.9 - 1 - 1.2m - 10%, 1.2 - 1 	ron mottle: 1m - 50%,	wn (7 5YR 5/2)	5.2 7.1	2	3
0.4 1.2	5VP 1/6 cample ID:					
0.2 1.4	Moist sandy clay, n plasticity, cohesive, fi graded sand, iron mo sample ID: TA	ne poorly ottle 10%,	omm ((in 12:413)	4.6 6.3	2	
0.0 1.6						
-0.2 1.8	poorly graded sand, sa	ne medium and content	1.95			
-0.4 2.0	<5%, water table at	ron mottle 1.95m,	Not specified	4.0 7.4	3	• 110
-0.6 2.2	sample ID: TA_	12_5				
-0.8 2.4						
		The Par				

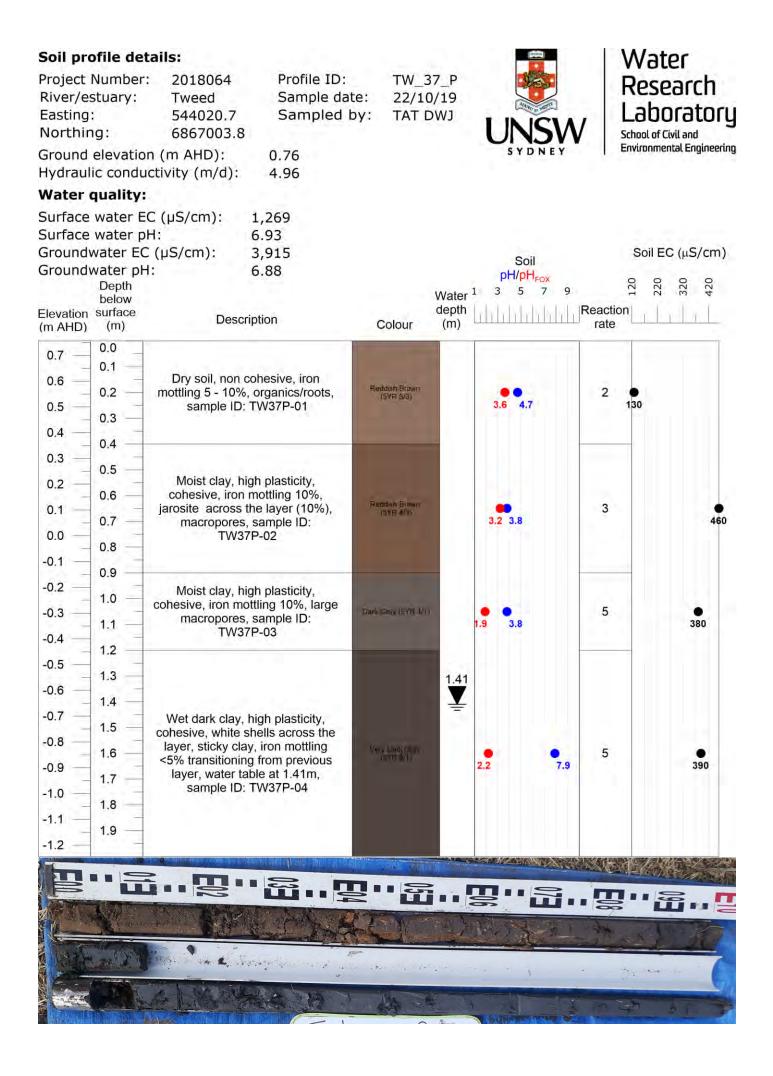

Soil prof Project N River/est Easting: Northing	lumber: tuary:	2018064 Tweed	Profile ID: Sample date Sampled b		/19		SVA	/ F	hool of Civil	rch atory
			.03 .20			S Y	DNEY	' Er	nvironmental	Engineering
Water q	uality:									
Surface v Groundw Groundw	water pł ater EC ater pH Depth below surface	(µS/cm): 1,52	20	Colour	Water depth (m)	pH/	oil DH _{FOX} i 7 9	Reaction	Soil EC (μ S/cm)
(m AHD) 1.0	(m) 0.0	Dry sandy clay, fine poo	orly graded	Colour	(iii)			Tate		
	0.2	sand, non-cohesive, ir 5%, high organics roots/macropores, sa TA_13_1	on mottle s and	Week Red (10R 5/3)		3.2	4.8	1		9 210
0.6	0.4	Dry - moist (from 0.8r clay, fine poorly grad some amount of sand, low plasticity, iron mo high organics, sam TA_13_2	ed sand, cohesive, ttle 10%,	Week Red (10R 5/2)		3.5	5.9	2	• 110	
0.2	0.8	Moist sandy clay, fine poorly graded sand, plasticity, cohesive, in 5%, limited organics, s TA_13_3	medium on mottle	Douby Law (. 571 B.T.		3.8	6.7	5	73	
-0.6	1.4 — - 1.6 — - 1.8 —	Moist clay, medium p cohesive, sample ID:			1.7 ¥	2.7	•7.0	5	• 110	
-1.0	2.0 —					2				
	2.4				en consequences					


Soil profile deta Project Number: River/estuary: Easting: Northing:	ails: 2018064 Tweed 547887.7 6870903.2			/19	U	NSVA	 	Water Research Laboratory chool of Civil and
Ground elevation Hydraulic conduc		0.34 Not measure	ed		s	YDNEY	E	nvironmental Engineering
Water quality:		not measure						
Surface water EC Surface water pH Groundwater EC Groundwater pH: Depth below Elevation surface (m AHD) (m)	l: (µS/cm):	Not measured Not measured Not measured Not measured		Water depth (m)		Soil I/pH _{Fox} 5 7 9	Reactior rate	Soil EC (µS/cm)
0.3 0.0	land the			1.0				
0.2 - 0.1 - 0.2 - 0	Dry gravel, canno and roots, iron n sample ID:	nottling (<5%),	-		2.6	5.1	1	310
0.1 0.3 0.4	Moist sandy cl increases down t medium), mottled	he layer (low to					2	
-0.1 0.5	and 5YR 4/1), iro 40%), macropore TW14	es, sample ID:	Light Gray (5YR 7/1)		3.0	4.6	2	270
-0.3 — 0.6 —	Moist sandy c plasticity, fine well sand, macropore	graded angular	Pinkish Gray (5YR 7/2)				3	
-0.5 — 0.8 —	(10 - 15%), sampl				3,3	5.1		250
-0.7 - 1.0 - 1.1 -								
-0.8 1.2	Wet dark sandy plasticity, well gra			1.3				
-1.0 - 1.3 - 1.4 -	some iron mottling ID: TW1	g (<5%), sample	Liare Glox (SY7) d(1)	Ŧ	2.4	7.1	5	9 220
-1.1 —								
-1.3 1.6							A1 2010 primp man	
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.			3 <u>s</u>					
C C L C C C C C C C C C C C C C C C C C		MAN				C.L.		

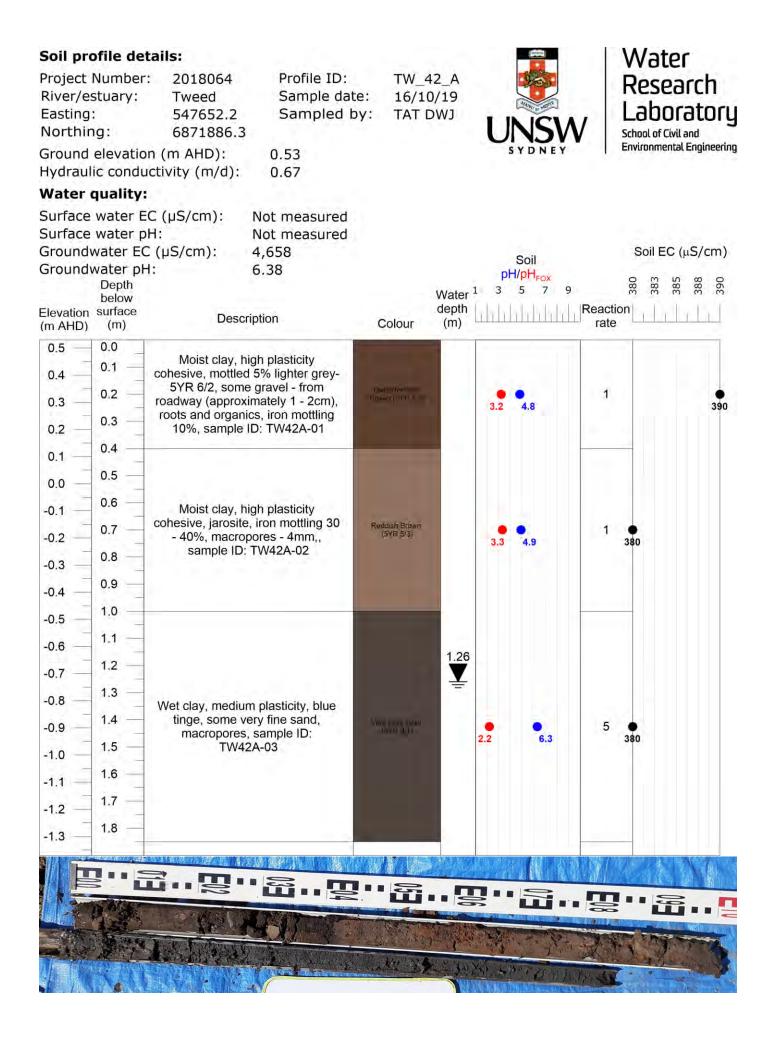


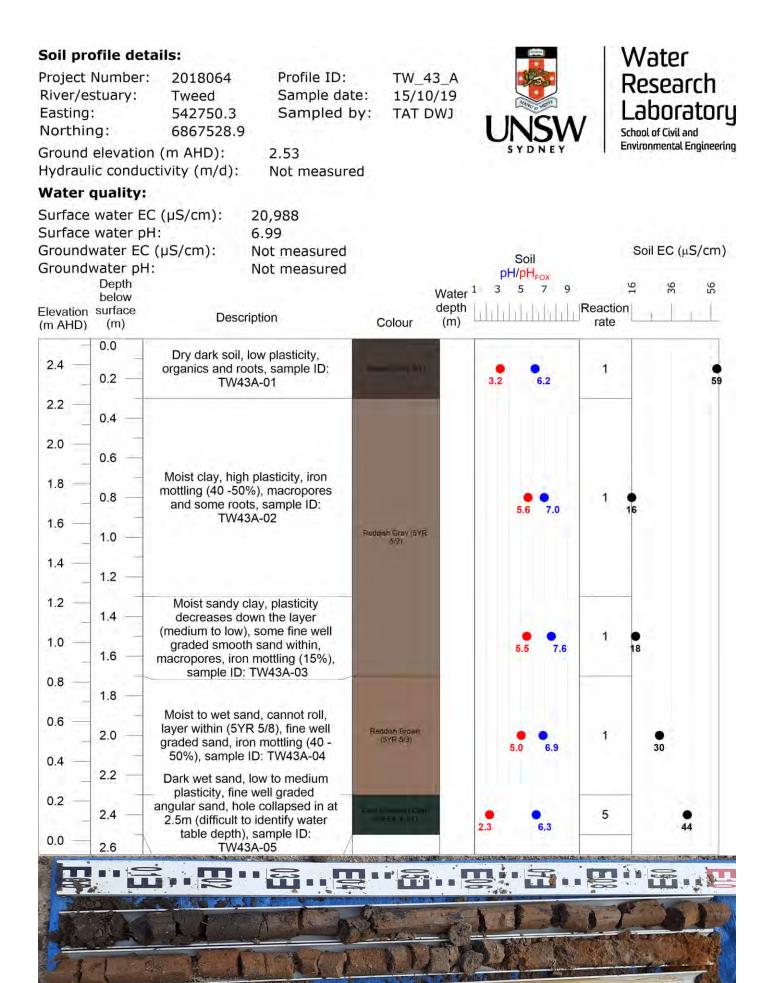

Soil profile der Project Number River/estuary: Easting: Northing: Ground elevatio	: 2018064 Profile ID: Tweed Sample da 540215.8 Sampled 6869551.5	ate: 18/10/19		Water Research Laboratory School of Civil and Environmental Engineering
Hydraulic condu				
Water quality:				
Surface water E Surface water p Groundwater EC Groundwater pH Depth below Elevation surface (m AHD) (m)	H: 7.07 C (μS/cm): 3,547	Wat dep Colour (m	th [,],], [,],], [,], [,],]	Soil EC (µS/cm) ♀ ♀ Reaction rate
0.8 0.0		-		
0.7 0.1 0.2 0.2 0.3 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Dark dry clay, low plasticity, organics/roots, sample ID: TW27A-01		2.8 4.9	1 • 59
$\begin{array}{c} 0.4 \\ 0.3 \\ 0.2 \end{array} = \begin{array}{c} 0.4 \\ 0.5 \\ 0.6 $	Wet clay, high plasticity-cohesive, iron mottling 30%, macropores, organics/roots, sample ID: TW27A-02	Gray (SYR 6/1)	3.8 5.0	1
0.1 0.7 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	Moist - wet clay, high plasticity, iron mottling 25%, jarosite <5%, sticky clay, sample ID: TW27A-03	Gray (BVR-5/1)	3.6 5.4	1 250
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wet clay, medium to high plasticity across the layer - cohesive, iron mottling 10%, presence of jarosite across 20% of the layer, macropores, sticky clay, sample ID: TW27A-04		2.3 6.1	2 270
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wet dark clay, very high plasticity - cohesive, white shells across the layer, black organics within the layer, macropores, sticky clay, sample ID: TW27A-05	Very seen (see	2.1 8.0	5 • 260
-1.2				
			813.	8.3.
	- A my let of the set	No. CARGO		Carlo and
ALL SEV				-164
Carles .		1. 1 Mar 2 M		

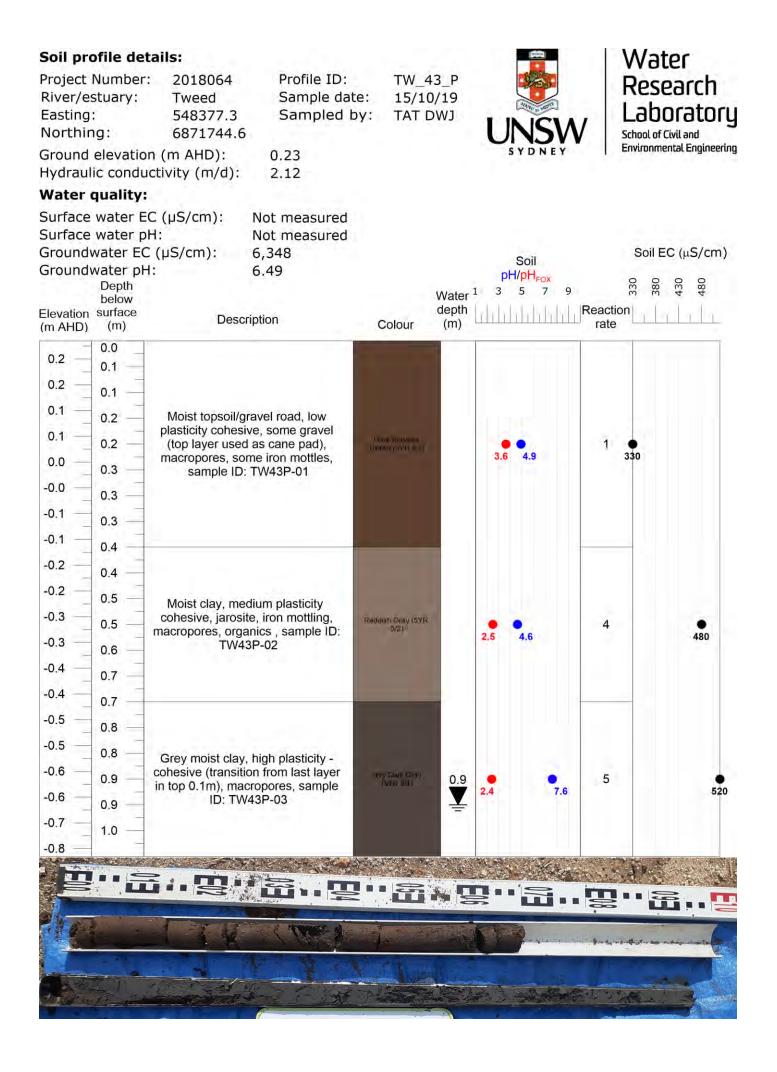


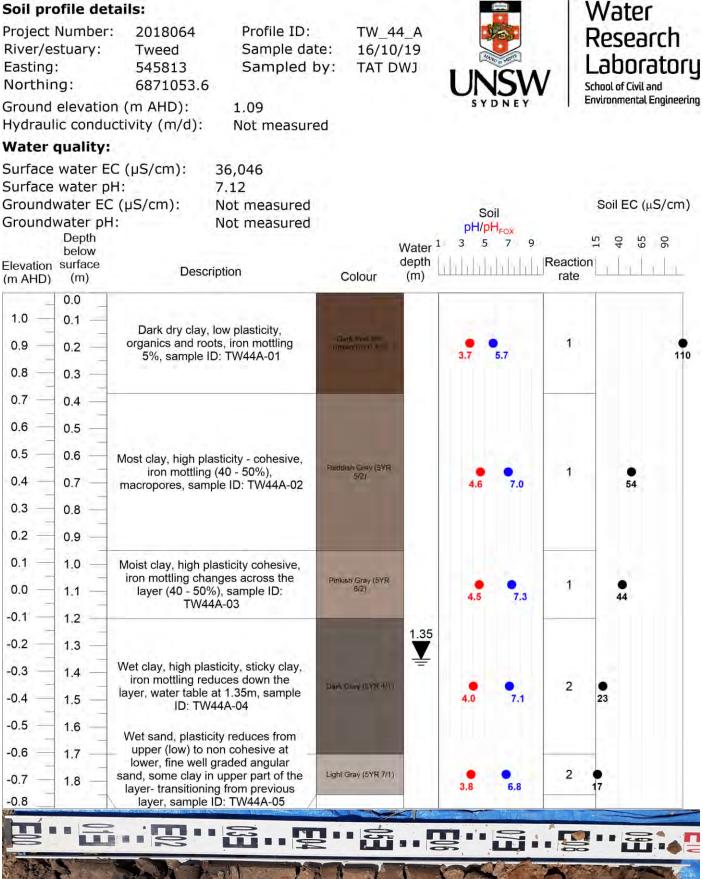

Soil profile de Project Number River/estuary: Easting: Northing:	r: 2018064 Profile ID Tweed Sample d 538725 Sampled 6865243.3	ate: 23/10/1	9	V Water Research Laboratory School of Civil and Environmental Engineering
Ground elevation Hydraulic condu			515411	
Water quality				
Surface water f Surface water p Groundwater p Depth below Elevation surface (m AHD) (m)	bH: 6.29 C (μS/cm): 1,757	de	Soil pH/pH _{FOX} ater ¹ 3 5 7 9 apth m)	Soil EC (μS/cm)
0.8 - 0.0 - 0.2 -	Dry clay, low plasticity, roots and black organics, iron mottling 5%, sample ID: TW32A-01	Barris Sec. 5	3.6 5.9	2 190
0.6 0.4	Moist clay, a section of black dark soil (0.26 - 0.3m)-5YR 2.5/1, high plasticity, cohesive, iron mottling 40 - 50%, macropores, some jarosite in lower parts of the layer <5%, sample ID: TW32A-02	Dark Faderia (Jawy (598-402)	4.5 6.0	2 •
-0.2 — 1.2 — -0.4 — 1.4 —	Moist light grey clay, high plasticity, cohesive, macropores, organics/roots, iron mottling 20%, jarosite <5%, , sample ID: TW32A-03	Light Gray (SYR 7/1)	3.6 4.9	4 • 140
-0.6 1.6	Wet clay, high plasticity cohesive, sticky clay, layer contains mixture of peat and jarosite, macropores, organics, sample ID: TW32A-04		1.87 	5 • 100

	per: 2018064	Profile ID: Sample dat Sampled b 0.91 0.31		/19	UNS	SW	Water Research Laboratory School of Civil and Environmental Engineering
Water qual		0.51					
그 가지 이것은 걱정이		1,300					
Surface wat		6.7					
		3,600			Soil		Soil EC (µS/cm)
Groundwate Dep		5.6			pH/pH _{FC}		120 220 320
belo Elevation surfa	N			Water ¹ depth	. 3 5	7 9	
(m AHD) (m		ption	Colour	(m)		rate	
0.8 0.2	Dry clay, non- co iron mottling <1 TP_3	%, sample ID:	Brown (7 518 415)			3	130
0.6	_						
0.4	— Moist clay, hig						
0.4 —	cohesive, macropo of organics, iron m	nottling 30 -50%	Wash Kea (2.5YR 40)		3.3 4.4	3	● 160
_ 0.6	- (5YR 5/8), samp	ble ID: TP_35_2			22		
0.2 - 0.8		1.0.0					
0.0	Moist grey clay, I cohesive, som						
_ 1.0	macropores, iron	mottling <5%,	Annik Konstantik Carry Greek (2011		3.0 4.4	5	● 180
-0.2 —	sample ID:	TP_35_3					
_ 1.2							
-0.4 1.4	<u> </u>						
-0.6	Wet grey clay, I			1.55	• •	5	•
_ 1.6	cohesive, sampl	e ID: TP_35_4	Work Red (2.5YB AG)	Ŧ	2.0 5.3		310
-0.8	-						
_ 1.8							
-1.0 2.0	Wet clayey sand cohesive, coarse					5	•
-1.2	angular sand, sam	ple ID: TP_35_5			2.5 5.6		280
_ 2.2	Wet whitish clay,	high plasticity.					
-1.4 —	- cohesive, mottle 70%, 7.5YR 8/2 - 2	d: 7.5YR 7/8 -	Reddish Yellow (7.5YR 7/8)			5	•
_ 2.4	6/8 - 5%, sample				3.0 5.1		390
-1.6 2.6							
BI			···				
1			The section of the se	1200	CARRENT S	ALL STATE	
Cal-	a start	an and a start			Margare 1		
			TAT.Y	TRA		And States	
1			Constanting (C)	-	Marked M.	a series a	
ATAV	Star and	12 English	and in the second	inite of	The second	ant which we are	and the second sec
	Contraction of the local sector		Real Contraction			- Manality and	
	9		12.50	154		A LES A	

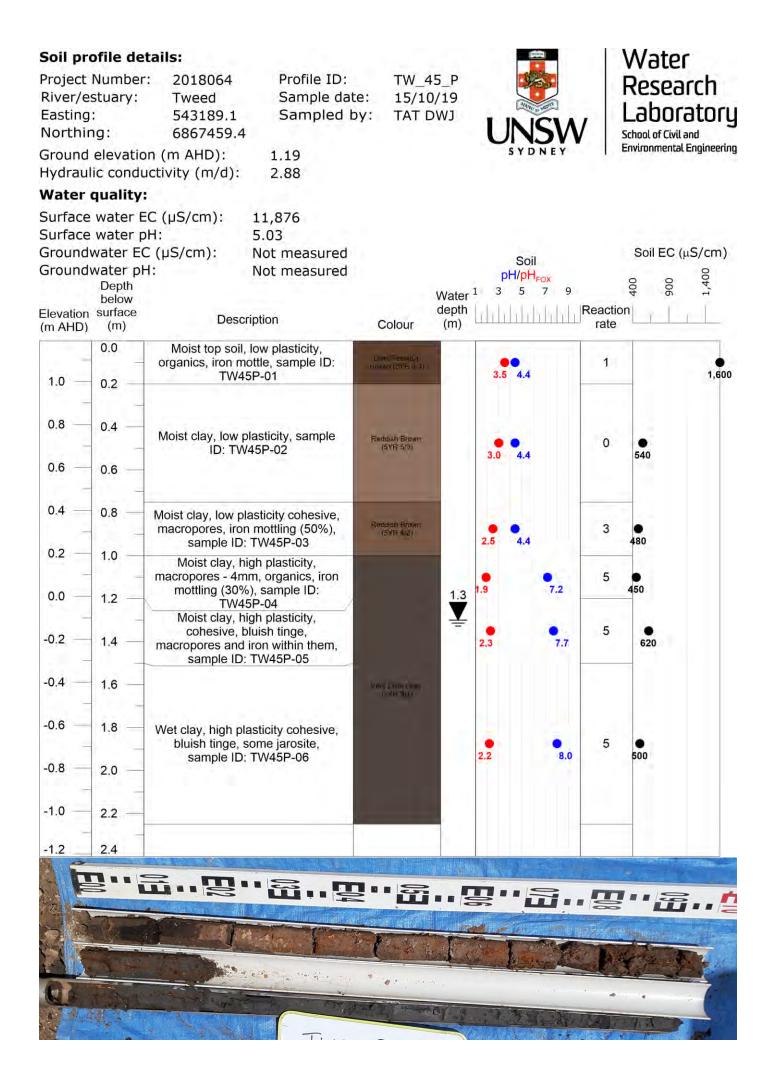





Project Number: River/estuary: Easting: Northing:	2018064 Profile Tweed Sample 543850 Sample 6867300.3 Sample			Vater Research Laboratory
Ground elevation Hydraulic conduct		sured	SYDNEY	Environmental Engineering
Water quality:				
Surface water EC Surface water pH Groundwater EC (Groundwater pH: Depth below Elevation surface (m AHD) (m)	: Not measu		th [.].].].].].].].	Soil EC (µS/cm)
0.9 0.0 0.1 0.1 0.8 0.2 0.7 0.3	Dry sandy clay, low to no plasticity, iron mottling increase down the layer (40 - 50%), organics and roots, sample ID TW37A-01	Fundminh Group (5VB 5/2)	2.6 4.8	5 • 32
0.5 0.5	Moist dark clay, high plasticity has fine graded sand layer (0.6 0.7m), macropores, iron mottlin 30%, organic/roots, contains pe layer(0.55 - 0.63m), sample ID TW37A-02	3 - ng eat	2,3 4.3	5 • 60
0.2 - 0.8 - 0.9 - 0.9 - 0.0 - 1.0 - 4.0 - 0.1 -	Moist - wet sand, non-cohesive medium grained well graded angular sand, iron mottling 30 40%, water table at 1.2m, samp ID: TW37A-03	Pinkish White (5YR 8/2)	3.3 4.7	2 • 42
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wet dark grey sand soil, plastic increases down the layer (non-cohesive - low plasticity), nedium grain well graded angu sand, some clay at bottom of th layer, sample ID: TW37A-04	lan Down (William	2.3 4.8	5 130



	umber: uary: : levation	2018064 Tweed 545358.8 6869126.9 (m AHD):	Profile ID: Sample da Sampled 0.83	te: 16/10	/19			/ Res	oter Search Ooratory of Civil and mental Engineering
		tivity (m/d):	0.38						
Water qu	성상 감독하는								
Surface w Surface w Groundwa Groundwa	vater pH ater EC	: (µS/cm):	24,852 6.87 3,431 6.47			So		Soil	EC (μS/cm)
E	Depth		0.17		Water	pH/pl 1 3 5	¹ FOX 7 9	140	340 440 540
Elevation su	oelow urface (m)	Descri	ption	Colour	depth (m)	նհեհե	hhhh	Reaction rate	<u>elelel</u>
-	0.0	Dry topsoil, no organic/roots, TW38	sample ID:	Brown Core (10)		2.7 4.5		1 • 150	
0.6 — 0	0.2								
0.4 0	0.4	Dry dark non-c macropore, iron 30%), sample l	mottling (15 -	Reddish Brown (SVR 5/3)		3.3 4.5		1 •	
0.2 0	0.6 —	ou ioj, sampio i	5. 11100/102						
-	+								
0.0).8 —	Moist clay, mec cohesive, large 10mm, iron mottl	macropores -	Dark Reach Cay (SVR 473)		••		1	•
-0.2 1	1.0 —	sample ID:				2.7 3.9			530
-0.4 1	1.2 —								
-0.6 1	1.4 —								
-	-								
-0.8 - 1	1.6	Wet clay, high p	lasticity, very		1.8		-		
-1.0 1	1.8	cohesive, blue tin at 1.8m, macropo TW38	res, sample ID:	Meny Land Coas ; (1000 Bits :	Ŧ	2.3	7.4	5	420
-1.2 2	2.0								
-1.4 _ 2	2.2 —								
- 2	2.4								
		1. N		gB		J	3		B 📴 '
		T. A. W.	NATE OF			.4		D. W	
	TAX I		TOX G	- And	T		S. A. A.		
SI	Make 1	N-YOY						i i y	
Tra	and y	A SERVI		12 ·		i.I.		12-3 P	. ()
	C. N.C.B.	and the second second			Anne		- March		Charles and a
	1 2	L_AL	1.00		1. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	STAR AL	A REAL PROPERTY	AT Search and	
						Salar Salar			



12.2

Soil profile der Project Number River/estuary: Easting: Northing: Ground elevatio Hydraulic condu	: 2018064 Profile ID: Tweed Sample da 545905.6 Sampled 6871366.8 n (m AHD): 0.63	ate: 17/10/19		Water Research Laboratory School of Civil and Environmental Engineering
Water quality:				
Surface water E Surface water p Groundwater EC Groundwater pH Depth below Elevation surface	H: 8.29 C (μS/cm): 5,556 H: 6.29	Water depth	Soil pH/pH _{FOX} 1 3 5 7 9	Soil EC (µS/cm) 006 1',150 Reaction
(m AHD) (m)	Description	Colour (m)		rate
0.6 0.0 0.1 0.1 0.1	Dry dark clay, low plasticity, organics and roots, iron mottling <5%, sample ID: TW46P-01	(3.3 5.7	1 480
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Moist clay, high plasticity cohesive, iron mottling 40 - 50% (increases down the layer), macropores, sample ID: TW46P-02	Reddistr Gray (5YR 5/2)	4.0 5.4	1 1,400
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Moist sandy clay, plasticity increases down the layer (medium to high), fine well graded smooth sand within clay, macropores, iron mottling 20 - 30%, some black organics, sample ID: TW46P-03	Gray (5YR 6/1)	3.5 5.0	1 • 420
-0.2 -0.3 -0.4 -0.5 1.1	Moist - wet clay, high plasticity-cohesive, iron mottling reduces down the layer (30 - <5%), macropores, sample ID: TW46P-04	Reddish Brown (5¥R 5(4)	3.7 5.7	4 • 500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Wet sandy clay, interbedded sand and clay soils, plasticity reduces down the layer (medium to low), well graded fine angular sand, layer changes from sandy clay to clayey sand as you move downward, iron mottling <5%, sample ID: TW46P-05	Dark Gray (Evit 1+1)	3.4 6.6	5 530

Appendix references

- ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. *In:* GOVERNMENTS, A. A. N. Z. G. A. A. S. A. T. (ed.).
- BMT 2019. Tweed Estuary Tidal Inundation Assesment and Mapping.
- Boast, C. W. & Langebartel, R. G. 1984. Shape Factors for Seepage into Pits. *Soil Science Society of America Journal*, 48, 10-15.
- Bouwer, H. & Rice, R. C. 1983. The pit bailing method for hydraulic conductivity measurement of isotropic or anisotropic soil.
- DPIE. 2006. *NSW Water Quality and River Flow Objectives* [Online]. NSW Department of Planning, Industry and Environment. Available: <u>https://www.environment.nsw.gov.au/ieo/</u> [Accessed 17 July 2020].
- DPIE. 2020. *eSpade NSW Soil and Land Information* [Online]. Available: <u>https://www.environment.nsw.gov.au/eSpade2WebApp</u> [Accessed 2019].
- Eyre, B. D. & Pepperell, P. 1999. A spatially intensive approach to water quality monitoring in the Rous River catchment, NSW, Australia. *Journal of Environmental Management*, 56, 97-118.
- Ferguson, A. 2012. Review of water quality in the Tweed Estuary 2007 2011. ABER Pty Ltd.
- Genn, A. 2009. Stormwater Assessment and Management Plan Cobaki Lakes Estate Central Open Space Cobaki, NSW. Gilbert & Sutherland P/L.
- Gilbert and Sutherland 2009. Acid Sulfate Soil Assessment & Management Plan Central Open Space Area, Cobaki Lakes.
- Glamore, W. 2003. *Evaluation and Analysis of Acid Sulfate Soil Impacts via Tidal Restoration*. PhD Thesis, Faculty of Engineering, University of Wollongong.
- Green, R. 2005. *Acidity Barriers for Improving the Quality of Acid Sulfate Soil Discharge Water.* Doctor of Philosophy, University of New South Wales.
- Hirst, P., Slavich, P., Johnston, S. & Walsh, S. 2009. Assessment of Hydraulic Conductivity in Coastal Floodplain Acid Sulphate Soils on the North Coast of NSW. Orange, Australia: Industry & Investment NSW.
- Holloway, S., Green, J., Chadwick, T., Ferguson, A., Dilworth, T., Rohweder, D. & Alleston, T. 2010. Coastal Zone Management Plan for Cobaki Broadwater and Terranora Broadwater. Australian Wetlands, ABER.
- Hydrosphere Consulting 2017. Coastal Management Program for the Tweed River Estuary: Water Quality Assessment.: Prepared on behalf of Tweed Shire Council.
- IWC 2009. Cobaki and Terranora Ecosystem Health Monitoring Program 2009 Technical Report. International WaterCentre.
- JGA 2005. ENVIRONMENTAL IMPACT STATEMENT: PROPOSED EXPANSION OF SAND QUARRY AT AT CRESCENT STREET, CUDGEN.
- Johnston, S. G., Hirst, P., Slavich, P. G., Bush, R. T. & Aaso, T. 2009. Saturated hydraulic conductivity of sulfuric horizons in coastal floodplain acid sulfate soils: Variability and implications. *Geoderma*, 151, 387-394.
- King, I. P. 2015. Documentation RMA2 A Two Dimensional Finite Element Model for Flow in Estuaries and Streams. Sydney Australia.
- Kinsela, A. S. 2007. *Volatile Sulfur Compounds in Coastal Acid Sulfate Soils, Northern N.S.W.* Doctor of Philosophy, The University of New South Wales, Australia.
- Lin, C., Melville, M. D., Islam, M. M., Wilson, B. P., Yang, X. & van Oploo, P. 1998. Chemical controls on acid discharges from acid sulfate soils under sugarcane cropping in an eastern Australian estuarine floodplain. *Environmental Pollution*, 103, 269-276.
- Lin, C., Melville, M. D., White, I. & Wilson, B. P. 1995. Human and Natural Controls on the Accumulation, Acidification and Drainage of Pyritic Sediments: Pearl River Delta, China and Coastal New South Wales. *Australian Geographical Studies*, 33, 77-88.

Macdonald, B. C. T., White, I., Keene, A., Melville, M. D. & Reynolds, J. 2004. Acidity, metals and acid sulfate soils.

- Makings, U. & Pratt, K. 2016. Coastal Management Program for the Tweed River Estuary Literature Review (Working Draft). Hydrosphere Consulting.
- Manly Hydraulics Laboratory 1997. Tuckean Broadwater Water Quality Monitoring. Manly Hydraulics Laboratory.
- MHL 1997. Tumbulgum Canefields Water Quality Monitoring. Manly Hydraulics Laboratory.
- NHMRC 2011. Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy. Canberra: National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia.
- NSW Department of Finance and Services 2012. Standard Datum to AHD Corrections NSW. Land and Property Information, NSW Department of Finance and Services.
- NSW DPIE 2019. NSW Spatial Data Catalogue.

NSW Food Authority 2019. http://www.foodauthority.nsw.gov.au/industry/shellfish.

- Pratt, K. 2017. Coastal Management Program for the Tweed River Estuary: Water Quality Assessment.: Prepared on behalf of Tweed Shire Council.
- Pratt, K., Seccull, O. & Conroy, R. 2017. Coastal Management Program for the Tweed River Estuary: Ecological Assessment. Ballina, NSW: Hydrosphere Consulting.
- PWD 1991. Lower Tweed Estuary River Management Plan: Influent Audit Technical Report No. 2. NSW Public Works.
- Rayner, D. 2010. Understanding the Transport and Buffering Dynamics of Acid Plumes within Estuaries. Water Research Laboratory, WRL Research Report 238.
- Rayner, D. S., Harrison, A. J., Tucker, T. A., Lumiatti, G., Rahman, P. F., Waddington, K., Juma, D. & Glamore, W. 2023. Coastal Floodplain Prioritisation Study – Background and Methodology WRL TR2020/32. Water Research Laboratory, University of New South Wales.
- Sammut, J., White, I. & Melville, M. D. 1996. Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils. *Marine & Freshwater Research*, 669-684.
- Smith, J., van Oploo, P., Marston, H., Melville, M. D. & Macdonald, B. C. T. 2003. Spatial distribution and management of total actual acidity in an acid sulfate soil environment, McLeods Creek, northeastern NSW, Australia. *Catena*, 51, 61-79.
- SPCC 1985. Water Quality in the Tweed-Terranora Estuary. *State Pollution Control Commission Northern Rivers Study No.* 1.: State Pollution Control Commission,.
- TSC 2011. Drainage Assets Management Plan. Murwillumbah, NSW: Tweed Shire Council.
- Tulau 1999. Acid Sulfate Soil Management Priority Areas in the Lower Tweed Floodplains. Department of Land and Water Conservation, Sydney.
- Wallace, S., Barton, C., Rogencamp, G. & Dearnley, C. 2009. Tweed Valley Flood Study 2009 Update. Brisbane, QLD: BMT WBM Pty Ltd.
- Walsh, S., Riches, M. & John, H. 2012. North Coast Floodgate Project. Final Report.
- WBM Oceanics Australia 1997. Tweed River Water Quality Review. Prepared for Tweed Shire Council.
- White, L., Melville, M. D., Wilsor, B. P., Price, C. B. & Willett, L. Understanding acid sulphate soils in canelands. Proceedings of the National Conference on Acid Sulphate Soils, 1993 Coolongatta, Queensland. CSIRO, NSW Agriculture, Tweed Shire Council, Australia, 130-148.
- Willett, L., Melville, M. D. & White, I. Acid drainwaters from potential acid sulphate soils and their impact on estuarine ecosystems. M.E.F. Van Mensvoort and D. Dent (cds.) Proc. 4th Int. SympAcid Sulphate Soils,, 1993 Ho Chi Mink City.
- Wilson, B. P. 1995. *Soil and Hydrological Relations to Drainage from Sugarcane on Acid Sulfate Soils.* Doctor of Philosophy, University of New South Wales.
- Wilson, B. P., White, I. & Melville, M. D. 1999. Floodplain hydrology, acid discharge and change in water quality associated with a drained acid sulfate soil.
- Winberg, P. & Heath, T. 2010. Ecological Impacts of Floodgates on Estuarine Tributary Fish Assemblages. Report to the Southern Rivers Catchment Management Authority.

WRL 2017. Assessment of the Risk of Overtopping of Bray Park Weir and Contamination of Drinking Water Supply Due to Climate Change.

Yang, X. 1997. Applications of Remote Sensing and GIS to Acid Drainage Management in an Estuary Floodplain Agricultural Environment. PhD, University of New South Wales.

Young, W. D., Henley, J., 1979. Tweed River Flood Mitigation Work as Executed. Tweed Shire Council.